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CGFormer: ViT-Based Network for Identifying
Computer-Generated Images With Token Labeling

Weize Quan , Pengfei Deng , Kai Wang , and Dong-Ming Yan , Member, IEEE

Abstract— The advanced graphics rendering techniques and
image generation algorithms significantly improve the visual
quality of computer-generated (CG) images, and this makes it
more challenging to distinguish between CG images and natural
images (NIs) for a forensic detector. For the identification of
CG images, human beings often need to inspect and evaluate
the entire image and its local region as well. In addition,
we observe that the distributions of both near and far patch-wise
correlation have differences between CG images and NIs. Current
mainstream methods adopt the CNN-based architecture with the
classical cross entropy loss, however, there are several limitations:
1) the weakness of long-distance relationship modeling of image
content due to the local receptive field of CNN; 2) the pixel
sensitivity due to the convolutional computation; 3) the insuffi-
cient supervision due to the training loss on the whole image. In
this paper, we propose a novel vision transformer (ViT)-based
network with token labeling for CG image identification. Our
network, called CGFormer, consists of patch embedding, feature
modeling, and token prediction. We apply patch embedding
to sequence the input image and weaken the pixel sensitivity.
Stacked multi-head attention-based transformer blocks are uti-
lized to model the patch-wise relationship and introduce a certain
level of adaptability. Besides the conventional classification loss
on class token of the whole image, we additionally introduce
a soft cross entropy loss on patch tokens to comprehensively
exploit the supervision information from local patches. Extensive
experiments demonstrate that our method achieves the state-of-
the-art forensic performance on six publicly available datasets in
terms of classification accuracy, generalization, and robustness.
Code is available at https://github.com/feipiefei/CGFormer.
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I. INTRODUCTION

IMAGE has become a prevalent and important medium of
communication due to simple acquisition process and rich

content. Natural image (NI) captured by digital camera is
historically reliable, i.e., “seeing is beliving”. Unfortunately,
this reliability is threatened by the computer-generated (CG)
image produced by advanced computer graphics rendering
techniques and image generation algorithms. These CG images
often have similar visual realism as the natural images (see
Fig. 1(a) for example). Consequently, what you see is no
longer trustworthy, and distinguishing CG images from NIs
(i.e., CG image forensic problem [1]) is a practical and
valuable task in the image forensics community.

In the literature, many efforts have been made to solve
this problem. Early work mainly relied on feature engineer-
ing [3] to design discriminative features, such as, geometry-
based features [4] and wavelet statistic-based features [5].
These hand-crafted features are then fed to a classifier,
e.g., LDA (linear discrimination analysis), nonlinear SVM
(support vector machine), ensemble classifier, etc. The feature
design heavily depends on the human prior knowledge and
some (shallow-level) observations about the data, therefore,
the hand-crafted features often have a limited discrimina-
tion capability. Correspondingly, this hampers the identi-
fication performance of hand-crafted-feature-based forensic
methods.

Inspired by significant performance improvement of convo-
lutional neural works (CNNs) on image classification, where
CNN combines the hierarchical feature extraction and classi-
fier as a whole, recent research works [2], [6], [7], [8] pay
more attention to the design of CNN models and achieve
better forensic performance compared to traditional methods.
However, these CNN-based approaches still have limitations
in two aspects, i.e., generalization and robustness, which are
very important factors for a forensic detector working in
real-world scenarios. The generalization refers to the perfor-
mance of forensic models trained on “known” data and tested
on “unknown” data. The robustness means achieving stable
classification performance when the test data are subject to
post-processing operations (either unintentional or malicious),
e.g., rescaling, JPEG compression, and noises.

Through carefully analyzing the existing CNN-based meth-
ods, we think that there are three reasons related to the
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Fig. 1. CG images (a) and NIs (b). CG images are generated by the
rendering tool VRay; NIs are from LSCGB dataset [2] and Corona dataset [1],
respectively.

limitations mentioned in the last paragraph. The first one is
the convolution computation process in CNNs. The common
convolutional operation is element-wise product between pix-
els in a convolutional window and weights in a convolutional
kernel, followed by a summation. This process fully depends
on the pixels in local windows and thus is relatively sen-
sitive to these pixel values and corresponding distributions.
As a result, the trained models are possibly vulnerable to
changes in the values of local pixels and their distributions,
e.g., changes introduced by post-processing operations such
as rescaling and JPEG compression. In addition, the weights
of learned convolutional kernels are fixed and applied to each
input image. Therefore, CNNs to some extent have limited
adaptability to the content of a single image and this may
hamper the model’s generalization. The second reason is
the limited capability of modeling long-distance relationships
of image content. CNNs progressively enlarge the receptive
field with stacked convolutional layers (with dilations) and
pooling operations so as to access larger regions of input
images. The receptive field refers to the region of input image
that is path-connected to a neuron in a certain layer [9].
However, simple stacks of multiple convolutional layers cannot
effectively establish the relationships between long-distance
image content, while such relationships contain important
traces for CG image forensics as described in Section III-A.
The third reason is that current CNN-based methods omit the
importance of local image patches for the training objective.
A local patch from NI/CG image has same label as the entire
NI/CG image. However, existing methods mainly apply the
conventional cross entropy loss over the whole image to train
the model, in a similar way as the common image recognition
task in computer vision community [10], [11]. Consequently,
the CNN-based forensic detectors receive limited guidance to
explore the relationships between the local patches and the

global image. Inspired by these insights, we propose a vision
transformer (ViT)-based network with simple and effective
token labeling to significantly improve the generalization and
robustness for CG image forensics.

Our work provides the following contributions:
• We introduce a ViT-based framework, named as

CGFormer, for the CG image forensic problem. Com-
pared to CNN-based method, this framework can lessen
network’s reliance on pixel values and corresponding
distributions in a local window, and model the relation-
ships of both near and far image patches. Therefore, our
framework is able to achieve better generalization and
robustness.

• We propose an effective token labeling method to opti-
mize the training process. Besides the classification loss
on the whole image, we add a weak constraint on the
local patches, so that each patch token of our pro-
posed CGFormer can capture more local information and
the local-global relationships. This weak constraint can
remarkably improve the forensic performance.

• We conduct a comprehensive study on CNN-based and
ViT-based methods for the CG image forensic problem,
including architecture analysis, experimental compar-
isons, visualization, and understanding. This provides
some insights and inspires follow-up studies.

• Compared to CNN-based approaches, our ViT-based
framework achieves the state-of-the-art performance on
six common datasets for CG image forensics: LSCGB [2],
SPL2018 [12], Autodesk [1], Artlantis [1], Corona [1],
and VRay [1].

The rest of this paper is organized as follows. Section II
reviews the existing works. Section III describes the motivation
and technical details of the proposed method. In Section IV
we present the experimental results of our method, compare
it with existing state-of-the-art methods, and make efforts
to understand the results with visualization tools. Section V
concludes this paper and discusses directions for future work.

II. RELATED WORK

This section briefly reviews the existing CG image foren-
sic approaches, including computer graphics-generated image
detection and generative models-generated image detection.
We refer readers to recent surveys [13], [14] for more details
and information about the relevant research.

A. Computer Graphics-Generated Image Detection

1) Traditional Methods: Traditional methods follow a
two-stage machine learning framework consisting of feature
extraction and classifier design. The previous works extract
the discriminative features in spatial domain and transform
domain.

a) Spatial domain: This kind of methods usually extracts
the statistical differences, texture details, and geometric infor-
mation as the discriminative features. Based on the fractal and
differential geometry, Ng et al. [4] designed geometry-related
features to identify CG images. Pan et al. [15] used the global
color distribution and the texture difference as the cues
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for CG image forensics. Sankar et al. [16] proposed hybrid
features combining the periodic correlation, color histogram,
moment and local patch statistics. More aspects are also
considered, such as local image edge statistics [17], gray-scale
invariant local binary patterns [18], PRNU (photo response
non-uniformity noise) [19], multi-fractal spectrum [20], etc.

b) Transform domain: Through transforming the image
from spatial domain to frequency domain, some hidden foren-
sic traces are exposed to construct the feature vectors. Lyu
and Farid [5], [21] combined the wavelet statistics of first four
orders (mean, variance, skewness, and kurtosis) as the feature
to discriminate between NIs and CG images. Chen et al. [22]
conducted the discrete wavelet transform in the HSV (hue,
saturation, lightness) color space, and then extracted discrim-
inative features from the discrete Fourier transform of the
wavelet coefficients. Özparlak et al. [23] extracted features
from the contourlet and ridgelet transform of input image.
Considering some drawbacks existing in discrete and con-
tourlet wavelet transform, later, Wang et al. [24] proposed a
quaternion wavelet transform-based feature extraction method.

2) CNN-Based Methods: The basic idea of CNN-based
methods is to directly learn the mapping function from input
image to output label. Technically, the automatic feature
extraction and classifier are combined as a whole, which can
be trained in an end-to-end manner. Based on the traditional
CG image forensic model, Rahmouni et al. [25] combined
convolutional layers, a specific pooling layer, and a multi-layer
perceptron to construct a deep model for distinguishing NIs
from CG images. By analyzing the difference between con-
ventional image classification and CG image forensic problem,
Quan et al. [6] improved CNN’s forensic performance with a
learnable preliminary filtering layer. They also understood the
trained model with several advanced visualization tools. To
remove low-frequency signals and enhance the sensor pattern
noise, Yao et al. [26] used three sets of high-pass filters in
the front of CNN model. He et al. [12] proposed a two-
stream CNN to exploit the color and texture characteristics
and then combined a RNN (recurrent neural network) to
enhance the discriminative capability of forensic features.
Nguyen et al. [27] modified the architecture and training
method of the capsule network [28] to better model image spa-
tial information. Instead of the uniform processing for entire
input image, Bhalang et al. [29] proposed an attention-guided
recursive model to progressively process the local image
area. Zhang et al. [30] identified the CG images by jointly
exploiting the channel and pixel correlation with a hybrid cor-
relation module, which can also be used in other CNN models.
Besides the classification accuracy, Quan et al. [1] paid more
attention to the blind detection (or generalization) problem,
and proposed a two-branch network with a negative-sample-
based enhanced training method. He et al. [7] introduced a
dual-branch CNN with an attention-based fusion model for
the identification of CG images. Their network takes as input
stacked original input image and its Gaussian blurred version.
Very recently, Bai et al. [2] constructed a large-scale CG
images benchmark (LSCGB), and proposed a texture-aware
network to explore the texture difference between NIs and
CG images. Yao et al. [8] designed a CG image detection

network with a feature transfer module and an attention-guided
fusion module, considering both the shallow content and deep
semantic features.

B. Generative Models-Generated Image Detection

1) Spatial Domain: Wang et al. [31] demonstrated that a
common image classifier (i.e., ResNet-50 [11]), which is
trained on a specific CNN generator with two operations
(i.e., Gaussian blur and JPEG compression), can detect fake
images generated by unseen CNN-based generative models.
Further, Chandrasegaran et al. [32] discovered the transferable
forensic features in “universal” detectors [31] by introducing
forensic feature relevance statistics. Chai et al. [33] designed
a CNN detector truncated from the Xception backbone [34]
with small receptive fields to focus on the local artifacts.
Cozzolino et al. [35] introduced a ForensicTransfer model
to improve the generalization performance. Specifically, this
model is an autoencoder-based network that jointly performs
embedding learning and forensic detection. There are some
works about face forgery detection. Li et al. [36] detected
face forgery by exposing the blending boundary. To train
the detector, they introduced a training sample generation
method that blends two real images. Kim et al. [37] pro-
posed a transfer learning-based feature representation learning
method to train a student model on new deepfake datasets and
achieved good performance on the domain adaptation task.
Shiohara and Yamasaki [38] also designed a method based on
synthetic training data, namely, self-blended images. Different
from [36], they generated the fake image by blending the
source image and its slightly changed version.

2) Frequency Domain: Zhang et al. [39] proposed a
spectrum-based classifier to identify GAN-generated images.
For an RGB image, they first extracted the 3 channels
of the frequency spectrum with 2D DFT (discrete Fourier
transform), then normalized the spectrum as the classifier’s
input. Frank et al. [40] applied the discrete cosine trans-
form (DCT) to transform input image into the frequency
domain, and then carried out the identification of GAN fake
images. Dzanic et al. [41] observed that there were notice-
able differences between real and deep network-generated
images in their high-frequency spectra, and proposed a detec-
tion method based on these characteristics. Durall et al. [42]
had a similar observation and proposed a spectral regu-
larization term, which was inserted into the GAN train-
ing objective to compensate for observed spectral distor-
tions. Recently, Chandrasegaran et al. [43] revisited the claim
that CNN-generated images shared high-frequency spectral
decay attributes as reported in previous studies [41], [42].
They observed that these discrepancies could be avoided
by modifying the last feature map scaling method. Simi-
larly, Dong et al. [44] proposed a pipeline to mitigate spectra
artifacts and correct the power discrepancy of GAN-based
images. As a result, the spectrum-based detectors [40], [42]
have a noticeable performance drop. These recent researches
imply that spectral(frequency)-domain-based detectors can be
vulnerable to mitigation methods; by contrast, the spatial-
domain-based methods may have better robustness.
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Fig. 2. The distribution of correlation of patch pairs with different distances: 16, 48, 148, and 200. In (a-d) are results calculated on LSCGB [2], and in
(e-h) are results calculated on SPL2018 [12].

Fig. 3. Illustration of effective receptive field of state-of-the-art CNN-based
CG image forensic detectors.

III. PROPOSED METHOD

A. Observation & Motivation

For the CG image forensic problem, we have several obser-
vations and have carried out some analyses about the data, the
existing CNN-based methods, and human observers.

1) Correlation Analysis: The images generated by comput-
ers, based on advanced rendering techniques or the recent
deep generative models, are all simulating the distribution
of pixels in natural images. Due to various influence fac-
tors, e.g., illumination, viewing angle, shadow, occlusion,
and camera settings, the distribution of pixels is complex
and diverse for natural images. Different rendering algo-
rithms and trained deep generative neural networks may cover
part of the distribution space of natural images. In this
work, we use the probability distribution of the correlation
of image patches with different distances as the statistic
measure to illustrate the differences between NIs and CG
images.

We analyze this statistical distribution on two datasets:
LSCGB [2] and SPL2018 [12]. Specifically, we randomly
select N natural images and N CG images from one dataset,
where N = 10, 000 for LSCGB and N = 3, 000 for
SPL2018. For each image, we randomly crop 1,000 pairs of
16 × 16 patches with four different distances, i.e., 16, 48,
148, and 200, along the horizontal direction. To compute the
patch correlation, we first rescale the pixel value to [−1, 1],
and then flatten each color patch of 16 × 16 × 3 into a
768-dimensional vector. The patch correlation is obtained via

the inner product of two vectors representing a pair of patches,
and the correlation value is divided by 768 to fall into [−1, 1].
Fig. 2 shows the distribution of patch correlation for four
different distance settings. It is observed that the empirical
distributions of patch correlation exhibit notable difference
between NI and CG patches for all distances. Specifically,
more patch pairs of CG images fall into the strong correlation
region, for both close patch pairs and distant patch pairs. The
reason might be that computer generation algorithms have
potentially certain specific modes and rules which introduce
some kind of repetitive patterns to CG images, while NIs have
relatively more randomness.

2) Effective Receptive Field: For the CG image foren-
sic problem, CNN-based models are composed of multiple
convolutional layers and down-sampling layers. For each
convolutional layer, convolution operation is conducted via
convolutional kernels with fixed and small sizes (often 3×3 or
5 × 5) in a sliding window manner. Although the stacked
arrangement of convolutional layers can increase the receptive
field, the capability of modeling long-distance relationship
is limited [45] and the effective receptive field only occu-
pies part of the entire theoretical receptive field [46]. For
several advanced CNN-based CG image forensic methods,
i.e., ScNet [30], ENet [1], TextureNet [2], and CGNet [8],
we visualize the effective receptive field of a neuron in the
final feature extraction layers using the popular analysis tool
proposed in [46], and the results are shown in Fig. 3. We
can see that the effective receptive field of these models
for a feature neuron only covers a fraction of input image.
Therefore, the discriminative features extracted by CNNs have
a certain level of locality.

3) Human Observers: To identify the authenticity of a given
image, i.e., to answer the question whether it is an NI or a CG
image, human observers often need to analyze the local region
and the entire image, and the relationships between them as
well. Then, they combine all these pieces of information to
deduce a final result according to some “prior knowledge”.
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Fig. 4. The whole architecture of our CGFormer. Patch embedding contains the class token and the patch tokens. Feature modeling consists of 12 stacked
transformer blocks. Token prediction efficiently exploits the supervision information by adding cross entropy loss on class token and soft cross entropy loss
on patch tokens.

In addition, human observers have certain ability to correctly
recognize the images that are “unseen” during their learning
stage (i.e., images that are somewhat different from those seen
during learning). This “generalization” ability would be related
to the “adaptability” of their analysis process, especially the
analysis of relationships within a single image as described
above.

B. Our Framework

Inspired by the above observations and analyses, we intend
to design a novel CG image forensic network, which can
model the patch-wise relationship with near and far distances
and possess the good “adaptability” capability. Therefore,
we propose a ViT-based network with token labeling, named
as CGFormer. We adopt the transformer architecture to model
the patch relationships and the dynamic weight strategy hidden
behind the self-attention computation to enhance the “adapt-
ability” capability of network. Dynamic weights refer to the
so-called connection weights that are adaptively learned for
each image instance [47] (details are presented later in this
subsection), whereas the convolutional kernels are fixed for
all image instances. Compared to the simple inner product
of image space in Sec. III-A.1, multiple self-attention-based
blocks have the potential to model complex relationships
between patch pairs, which can enlarge the representation dif-
ferences between NIs and CG images. Moreover, we introduce
the token labeling to guide the network to extract more traces
from local patches and enhance the relationship modeling of
local patches and the global image.

Our CGFormer takes an image I ∈ R224×224×3 as input
and outputs a binary label y, where 0 means CG image and
1 means NI. As illustrated in Fig. 4, the whole network
consists of three parts: patch embedding, feature modeling,
and token prediction.

1) Patch Embedding: This part reorganizes the input image
as sequential tokens, which are then used for learning the
patch-wise relationship in the consequent feature modeling
stage. Image I is first split into 16 × 16 patches without
overlapping, and the total number of patches is M . For
each patch p, it is flattened into a vector and transformed
into embedded vector via a linear projection. It is called as
patch token T m

p ∈ Rd , where d is the feature dimension of
patch token, and m is the patch token index. For the image
recognition, a class token Tc ∈ Rd with learnable parameters

Fig. 5. Illustration of the multi-head attention module.

is often used to collect the discriminative information for the
final classification. Following the original ViT [48], we adopt a
learnable positional encoding mechanism, which introduces a
parametric matrix pos ∈ RM×d describing positional informa-
tion of image patches. After patch embedding, we can obtain
sequential tokens T ∈ R(M+1)×d . The detailed formulation is

T = cat(Tc, Tp + pos), (1)

where cat is the concatenation of patch tokens Tp and class
token Tc along the token dimension.

2) Feature Modeling: CNN-based methods extract the hier-
archical features through stacked convolutional layers and
down-sampling operations. In contrast, our method applies
multiple transformer blocks to extract discriminative features.
As shown in the middle of Fig. 4, the transformer block is
based on skip connection and multi-head attention [49]. The
transformer blocks take T ∈ R(M+1)×d as input and output
attentive tokens T̂ ∈ R(M+1)×d . In our work, there are B
stacked transformer blocks and we take an transformer block
as example to explain the practical computation process. This
can be formulated as follows:

T̃ = MHA(λ(T )) + T,

T̂ = MLP(λ(T̃ )) + T̃ , (2)

where λ is the layer normalization [50], MHA represents the
multi-head attention module, and MLP means a multilayer
perceptron layer.

Fig. 5 shows the architecture of multi-head attention mod-
ule. The input T ∈ R(M+1)×d of MHA is first processed
by layer normalization and then projected into query Q ∈

R(M+1)×d , key K ∈ R(M+1)×d , and value V ∈ R(M+1)×d ,
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respectively. It is written as,

Q = λ(T )WQ, K = λ(T )WK , V = λ(T )WV , (3)

where WQ
∈ Rd×d , WK

∈ Rd×d , and WV
∈ Rd×d are the

linear projection matrices. Then, Q, K , and V are split into
multiple parallel heads Qh

∈ R(M+1)×dh , K h
∈ R(M+1)×dh ,

and V h
∈ R(M+1)×dh , where dh =

d
H and H is the number

of heads. For h-th head, the attentive feature is calculated via
the scaled dot-product attention as

fh = Softmax

(
Qh (K h)T

√
dh

)
V h . (4)

Through this equation and as mentioned earlier in this
subsection, the connection weights (i.e., the Softmax part in
the above equation) are dynamically predicted for each image
instance according to the queries and the keys with scaled dot
product and softmax normalization. Output T ′

∈ R(M+1)×d

of MHA is obtained by concatenating these parallel attention
heads and linear projection:

T ′
= cat( f1, f2, . . . , fH )W′, (5)

where cat is the concatenation operator and W′
∈ Rd×d is the

learnable projection matrix.
3) Token Prediction: To comprehensively exploit the super-

vision information from the global image and local patches,
we propose a simple and effective token labeling method. It
adds the constraints on the features of class token and patch
tokens simultaneously. Let Fc denote the feature of class token,
and Fm

p denote the feature of m-th patch token. A shared
linear classifier FC with two output neurons transforms Fc
and Fm

p to the logits Gc and Gm
p , respectively.

For the class token, we use the classical cross entropy loss,
and it is formulated as:

Lc = −

L∑
l=1

log
exp(Gl

c)∑L
l=1 exp(Gl

c)
· 1{y = l}, (6)

where 1{·} is the indicator function (i.e., 1{False} = 0 and
1{True} = 1), and L is the number of classes (L = 2 in our
work representing two classes of NIs and CG images).

Different from the hard constraint in Eqn. (6), where for
an NI training sample the prediction score (Pr) must be close
to 1 (or respectively close to 0 for a CG training sample),
we add a soft constraint on patch token only requiring that the
corresponding prediction score is bigger than (or smaller than)
0.5 for NI (or CG). In other words, we do not penalize training
patches when an NI (or a CG) training patch is predicted
as NI (or CG) with Pr > 0.5 (or Pr < 0.5). This design is
reasonable because the forensic information hidden behind a
small patch (i.e., 16 × 16) sometimes may be not enough to
produce the right prediction with very high confidence. The
detailed formulation of loss function for the patch token is
written as:

Lp = −
1
M

M∑
m=1

L∑
l=1

log φ(
exp(Gm

p
l)∑L

l=1 exp(Gm
p

l)
) · 1{y = l}, (7)

TABLE I
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN

TRAINED ON LSCGB DATASET

TABLE II
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS

WHEN TRAINED ON SPL2018 DATASET

TABLE III
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS

WHEN TRAINED ON AUTODESK DATASET

where φ(·) is a thresholding function

Pr = φ(Pr) =

{
1 − ϵ, Pr > 0.5;

ϵ, Pr < 0.5.
(8)

where ϵ is a small factor to prevent numerical instability.
The final training objective of CGFormer is the average of

class token loss and patch token loss:

L =
Lc + Lp

2
. (9)

In [51], Jiang et al. used a token labeling technique to train
better vision transformers for image recognition task. They
applied a pre-trained image recognition model to generate a
dense score map as the auxiliary objective on patch token.
There exists two apparent differences between our token
labeling and [51]: (1) For our method, the supervision infor-
mation on patch tokens directly come from the training data,
whereas [51] needs a so-called machine annotator introducing
additional training cost and the performance of this annotator
also affects the final results of ViTs; (2) Instead of directly
using cross entropy loss as in [51], we additionally introduce
a relaxation after softmax, i.e., Eqn. (8).

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental set-
tings, including the datasets and implementation details. Then,
we evaluate our method through comparison experiments and
robustness analysis, and analyze our method via ablation
studies. Finally, we make efforts to understand the working
mechanism of our CGFormer with some visualizations.
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TABLE IV
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS

WHEN TRAINED ON ARTLANTIS DATASET

TABLE V
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN

TRAINED ON CORONA DATASET

TABLE VI
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN

TRAINED ON VRAY DATASET

A. Experimental Setup

1) Datasets: In this work, we compare and evaluate
our method on six publicly available datasets: LSCGB [2],
SPL2018 [12], Artlantis [1], Autodesk [1], Corona [1], and
VRay [1]. In the following, we briefly describe these datsets.

LSCGB is a large-scale CG image forensics dataset, which
contains 71,168 NIs and 71,168 CG images. NIs are col-
lected from existing CG forensics datasets (Columbia image
dataset [52] and Tokuda dataset [53]), public NI datasets in
computer vision (PASCAL VOC [54] and COCO [55]), some
movies without special effect, and several photo websites.
CG images mainly come from existing CG forensics datasets
(Columbia image dataset [52] and Tokuda dataset [53]), 3D
games and movies, cartoon, and generative adversarial net-
works (e.g., StyleGAN [56], BigGAN [57], etc). For data
split, we follow the original setting shared by [2]. In particular,
the training set consists of 49,823 CG images and 49,813 NIs,
and the test set contains 14,230 CG images and 14,233 NIs.

SPL2018 dataset comprises 6,800 CG images and 6,800
NIs, where CG images are created using over 50 graphics
rendering software tools (e.g., Maya, 3D Max, etc) and NIs are
captured with several digital cameras. Following the original
data split, 4,000 CG images and 4,000 NIs are used for
training, and 1,600 CG images and 1,600 NIs for testing.

The remaining four datasets, i.e., Autodesk, Artlantis,
Corona, and VRay, are collected by Quan et al. [1]. NIs are
from RAISE dataset [58] and VISION dataset [59], and CG
images are produced by the above four rendering tools. For
each dataset, the training set contains 5,040 NIs and 5,040 CG
images, and the test set contains 360 NIs and 360 CG images.

2) Implementation Details: Our model is implemented with
PyTorch 1.8.0. The GPU is an NVIDIA TITAN RTX. SGD
optimizer with the momentum of 0.9 and the weight decay
of 1e-4 is used to train our models. We set the batch size as
64. The learning rate is initialized to 0.003, and is adjusted
using a cosine annealing schedule [60] with Tmax = 30 and
ηmin = 1e − 7. The training process stops after 150 epochs.
The parameters of CGFormer is initialized using the weights
of ViT pre-trained on ImageNet-21K [61] and fine-tuned on
ImageNet-1K [62]. For the soft cross entropy loss on patch
tokens (Eqn. (7)), we empirically set ϵ = 0.01.

For all images, we resize the shorter edge as 512. In the
training stage, we randomly crop a 224×224 subimage as the
network input. In the testing stage, we obtain the prediction
of a test image by averaging predictions of ten subimages
(including subimages from the center and four corners, and
their horizontally flipped version), for our method as well
as for state-of-the-art methods to ensure fair comparisons.
Following previous methods [2], [8], [30], we use the accuracy
(in %) as the evaluation metric of forensic performance. In the
following tables, the classification accuracy when training and
testing data come from same dataset is in italic, while the
performance when training and testing data are from different
datesets (i.e., generalization) is shown in normal font.

B. Comparisons With State-of-the-Art Methods

In this work, we compare our network with several advanced
CG forensic methods, including ScNet [30], ENet [1], Tex-
tureNet [2], and CGNet [8].

Tables I-VI report the comparisons of five methods on
six datasets in terms of conventional classification accuracy
(i.e., training and test data from same dataset) and generaliza-
tion (i.e., training and test data from different datasets). Specif-
ically, in each table all models are trained on one dataset and
then tested on all datasets. From these tables, we can see that
our method achieves the superior overall performance. In terms
of classification accuracy (in italics), our method surpasses the
second best method by 2.12% (LSCGB), 0.94% (SPL2018),
0.28% (Autodesk), 0.14% (Artlantis), 0.68% (Corona), and
0.41% (VRay), respectively. Moreover, our method in many
cases notably enhances the generalization capability of CG
forensic detector. Taking the results in Table I as an example,
we can see that our CGFormer outperforms the second best
method TextureNet with significant gain of 7.72% (SPL2018),
10.14% (Autodesk), 10.39% (Artlantis), 8.48% (Corona), and
12.09% (VRay), respectively.

Next, we compare the robustness of all the above methods
against several post-processing operations, including rescaling,
JPEG compression, Gaussian noise, and salt and pepper noise.

Similar to [6], the rescaling operations contain down-scaling
(“S300”) and up-scaling (“S1000”) with bilinear interpolation.
The process is that we first resize the shorter edge of image
as 300/1,000 pixels and then rescale it back to 512 pixels.
For the JPEG compression, we consider three quality factors,
including 90, 80, and 70. The corresponding results are shown
in Fig. 6 and Table VII and VIII. The curves of our method
are almost flat, which means that our CGFormer is very
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Fig. 6. Classification accuracies of the five methods on six datasets under rescaling and JPEG compression post-processing.

robust against rescaling and JPEG compression. For other
CNN-based competitors, the performance drastically drops
for down-scaling and decreases as the strength of JPEG
compression increases. When the images are under rescaling
and JPEG compression operation, the correlation of pixels
with their local neighborhoods is potentially changed. CNN-
based forensic detectors are mainly composed of multiple
convolutional layers, where the convolutional operation is
within a local window and might be sensitive to the change
of local pixels correlation.

For the Gaussian noise, we add to the original pixel value a
random noise with zero mean and variances of 1, 10, and 20,
respectively. For the salt and pepper noise, the signal noise
rate (SNR) is set as 0.99, 0.95, and 0.90, respectively. The
corresponding results are shown in Fig. 7 and Table IX and X.
We can see that the classification accuracies of CNN-based
methods quickly decrease when the density of noise increases.
In contrast, the performance of our method is relatively stable
and apparently remains the best among all five methods. One
possible reason is that our method mainly depends on the
patch-wise relationship modeling, which is less vulnerable to
the change of individual pixel values.

In addition, we also compare our method with several
advanced methods designed for CNN-generated image detec-
tion, including SpecCNN [39], FSD [41], LFA [40], Xcep-
tion2 [33], and CNNDet [31], where SpecCNN, FSD, and LFA
are frequency domain-based methods. We train these models
on LSCGB dataset and then test them on other datasets,
including computer graphics-generated images (in Table XI)
and AIGC (artificial intelligence generated content)-generated
images (in Table XII). Following the setting in [31], all images
are resized with a shorter edge of 256 pixels, and we apply

center cropping in the testing stage. For AIGC-generated
images, we evaluate 13 synthesis models of different cate-
gories: (1) unconditional GAN (ProGAN [63], StyleGAN [56],
and BigGAN [57]); (2) conditional GAN (CycleGAN [64],
StarGAN [65], and GauGAN [66]); (3) perceptual loss
(CRN [67] and IMLE [68]); (4) low-level vision (SITD [69]
and SAN [70]); (5) Deepfake (FaceForensics++ [71]); (6)
diffusion model (stable diffusion [72] and midjourney1). The
images generated by the first 11 CNN-based generation meth-
ods are shared by [31]. We collect two kinds of diffusion
model-generated images, i.e., SD (stable diffusion) and MJ
(midjourney). For each diffusion model, we select 1,000
synthetic images with high realism and randomly select 1,000
real images from CNN_synth_testset [31].

From Table XI and XII, we find that our method in
general achieves superior detection performance. Furthermore,
we add five post-processing operations, e.g., Scale160 (down-
scaling), Scale500 (up-scaling), JPEG90, Var1, and SNR0.99,
on 13 kinds of AIGC-generated images. For Scale160 and
Scale500, we first rescale the shorter edge of the image
as 160/500 pixels and then resize it back to 256 pix-
els. The corresponding detection results are reported in
Table XIII-XVII. Among all competitive methods, our method
demonstrates the best overall robustness. In addition, most
detection models achieve rather limited performances when
tested on AIGC-generated images. A possible reason is that
there may exist differences between forensic traces on com-
puter graphics-generated images (main focus of this paper
and the dominant content of the LSCGB dataset representing
about 90% of its computer-generated images) and traces on

1https://www.midjourney.org/
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Fig. 7. Classification accuracies of the five methods on six datasets under Gaussian noise and salt and pepper noise post-processing.

TABLE VII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST RESCALING

TABLE VIII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST JPEG COMPRESSION

AIGC-generated images. Future research efforts shall be
devoted to investigating this interesting point.

C. Ablation Studies

1) Patch Size: Our CGFormer first conducts the patch
embedding, which splits the original input image into many
non-overlapped image patches. Here, we carry out ablation
experiments to analyze the impact of different patch size on the
forensic performance. Specifically, we evaluate the following
three types of patch size: 8 × 8, 16 × 16, and 32 × 32. For
each type, the model is trained and tested on all six datasets,
and the numerical results are reported in Table XVIII. Among

these three patch sizes, 16 × 16 achieves relatively superior
performance. When patch size is 8 × 8, such a small patch
contains less information for classification. For large patch
size, i.e., 32 × 32, the modeling of patch-wise relationship
is somewhat coarse, which may then hamper the capability
of the forensic detector. Therefore, we choose a patch size
of 16 × 16 with the appropriate amount of information and
relatively fine-grained patch relationship modeling.

2) Token Labeling: In this work, we introduce the token
labeling to comprehensively exploit the supervision informa-
tion of training data, i.e., the ground-truth label on the entire
image and local patches. As reported in Eqn. (7), we add a
soft constraint on the prediction of each patch. Besides this
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TABLE IX
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST GAUSSIAN NOISE WITH THREE LEVELS OF VARIANCE

TABLE X
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SALT AND PEPPER NOISE

Fig. 8. Illustration of effective receptive field of our network without token labeling (the top row) and with token labeling (the bottom row).

TABLE XI
THE PERFORMANCE COMPARISON OF OUR METHOD WITH FIVE

CNN-GENERATED IMAGE DETECTION METHODS

soft cross entropy loss, we have also tried other strategies:
hard labeling (“HL”), label smoothing (“LS”), two classifiers
(“TC”), and mean pooling (“MP”). “HL” means that class
token and patch token both use the classical cross entropy
loss as Eqn. (6). “LS” adopts the label smoothing [73] for class
token and patch token. Label smoothing was initially proposed
in [73] for regularizing the training of CNN recognition
models. Different from Eqn. (6), the label smoothing computes

the cross entropy loss over a weighted mixture of original label
of datasets with the uniform distribution.2 “TC” refers to the
variant where the class token and patch token are processed
respectively with two different classification headers. “MP”
conducts a global average on all patch tokens, and then
sends it to the classification header. As shown in Fig. 4
(part of “Token Prediction”), in our experiments “Baseline”
means that the model is trained without token labeling, i.e.,
only using Eqn. (6). We conduct the ablation experiments
on LSCGB and SPL2018 datasets, and the corresponding
results are reported in Tables XIX and XX. When comparing
the results of “Baseline” with those of other rows, we can
find that the token labeling is indeed useful for the CG
image forensic problem, in particular to improve general-
ization. Furthermore, our proposed soft cross entropy loss
has superior overall performance, compared to the other four
strategies.

2Label smoothing is implemented with the operation of timm.loss.
LabelSmoothingCrossEntropy in PyTorch.
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TABLE XII
THE PERFORMANCE COMPARISON OF OUR METHOD AND FIVE ADVANCED METHODS ON AIGC-GENERATED IMAGES

TABLE XIII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SCALE160

TABLE XIV
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SCALE500

TABLE XV
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST JPEG90

TABLE XVI
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST VAR1

TABLE XVII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SNR0.99

D. Visualization & Analysis
1) Effective Receptive Field: To further analyze the effect

of token labeling (i.e., Eqn. (7)), we visualize the effective

receptive field of our network according to the method pro-
posed in [46]. This is also used in a recent ViT-related research
work [74]. Fig. 8 shows the effective receptive field of class

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 01,2023 at 02:44:52 UTC from IEEE Xplore.  Restrictions apply. 



246 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE XVIII
CLASSIFICATION PERFORMANCE FOR DIFFERENT PATCH SIZES: 8 × 8 (P8), 16 × 16 (P16), AND 32 × 32 (P32)

Fig. 9. Illustration of prediction confidence of patch tokens. Green box highlights the wrong prediction.

TABLE XIX
ABLATION STUDIES OF TOKEN LABELING WHEN TRAINED ON LSCGB

token and several selected patch tokens, where our network is
trained with/without token labeling. Comparing the two rows
of Fig. 8, we can see that with token labeling (the bottom
row), the effective receptive field of patch tokens are more
uniform and can cover the full input image. This means that
patch tokens capture more far-distance information and thus
enhance the learned features.

TABLE XX
ABLATION STUDIES OF TOKEN LABELING WHEN TRAINED ON SPL2018

In addition, we evaluate the forensic performance of the
above patch tokens and the statistical results are shown in
Table XXI. Comparing the numerical values of “w/o TL” and
“w TL”, we can find that the classification performance of
patch tokens is in general considerably improved after adding
our soft cross entropy loss. This performance improvement is
also consistent with the visualization shown in Fig. 8.
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TABLE XXI
THE CLASSIFICATION PERFORMANCE OF PATCH TOKENS. “TL” REFERS TO OUR PROPOSED TOKEN LABELING (EQN. (7))

Fig. 10. Grad-CAM visualizations for the “CG” and “NI” category.

2) Prediction Confidence: Fig. 9 illustrates the prediction
confidence for several NI and CG images using the predictions
of patch tokens. “Baseline” means that the CGFormer is
trained without token labeling, and the samples enclosed by the
green boxes are wrongly classified by “Baseline”. Compared
to “Baseline”, we can observe that more patches are correctly
classified by introducing the token labeling. The reason is that
token labeling adds the soft supervision on individual patches
to take advantage of the useful information that has been
overlooked in patches. Therefore, our CGFormer can obtain
better forensic performance by comprehensively combining
the contributions from class token and patch tokens.

3) Grad-CAM: Gradient-weighted class activation mapping
(Grad-CAM) [75] is a prevalent tool to localize the important
regions in the input image for the final prediction. This tool is
conceptually simple and easily applicable to different network
architectures like CNNs and Transformers and it is often

utilized in the image forensics community for understanding
the results of deep networks. As shown in Fig. 10, we visualize
the Grad-CAM for NIs and CG images to compare our
method with existing CNN-based methods. For the image in
the first row of “CG” group in Fig. 10, our method pays
more attention to the desk with unnatural light reflection
and simple texture comparing to other competitors, and this
contributes to the final prediction. By contrast, our CGFormer
predicts the first sample in “NI” group as NI image mainly
due to the natural texture in the vegetation. For the second
row in “NI” group, most CNN-based methods focus on the
semantic object (e.g., the contour of castle), whereas our
method depends on the natural shadows in the top part of
castle. Similarly, our CGFormer predicts the second sample
in “CG” group as CG image due to the rather unrealistic sky.
To summarize, light, texture, shadow, and color are important
cues for distinguishing CG images from natural images.
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Fig. 11. Grad-CAM visualizations of five methods for CG images and NIs with post-processing of rescaling, JPEG compression, Gaussian noise, and salt
and pepper noise.

Fig. 12. Grad-CAM visualizations of our CGFormer for CG images and NIs
with post-processing of rescaling, JPEG compression, Gaussian noise, and
salt and pepper noise.

In addition, we visualize in Fig. 11 the Grad-CAM of NIs
and CG images under different post-processing operations.
Among all five methods, we can see that the Grad-CAM of
our method has no apparent changes for the vast majority
of samples. However, the post-processing operations clearly
affect the capture of forensic traces for CNN-based com-
petitors. This visualization again illustrates the robustness of
our CGFormer against potential post-processing operations.
Moreover, Fig. 12 visualizes the Grad-CAM of our CGFormer
for more examples under different post-processing operations.

The important regions related to the final prediction of our
method are stable for these examples, which means the good
robustness of our CGFormer.

V. CONCLUSION AND FUTURE WORK

For the CG image forensic problem, we carefully analyzed
the possible reasons of the limited generalization and robust-
ness of existing CNN-based methods, including the locality
and fixed kernels of convolutional layers, the sensitivity to
the pixel values and their distributions in a local window,
and the insufficient supervision information. Based on the
observations and analyses on data and CNN, we proposed a
ViT-based framework with token labeling. Patch embedding
is applied to project the original input image into sequential
tokens in a patch-wise manner, which serves for the subsequent
patch relationship modeling and can also decrease the local
sensitivity. To improve the model’s adaptability and extract the
discriminative information based on the relationship modeling
of patch pairs, we adopt multiple transformer blocks with
multi-head attention. A token labeling strategy is proposed
to better utilize the supervision information and further guide
the network to exploit the local-global relationship of a single
image. Extensive results demonstrate the superior forensic
performance of our proposed method.

In this work, we choose 16×16 as the patch size in the patch
embedding because this setting achieves relatively superior
results. In fact, CGFormer with 8 × 8 and 32 × 32 patches
sometimes also achieves decent results. In the future, we would
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like to design an appropriate architecture to combine these
three patch sizes to further improve the forensic performance.
We would also like to extend our framework to other image
forensic problems, such as deepfakes detection.
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