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Figure 1. Visual examples produced by our method. Top: disentanglement of pose and expression. Bottom: general video editing. Our method
can edit the pose or expression of the source image independently according to the driving image through decoupling pose and expression in
motion transfer. Benefiting from the disentanglement, our one-shot talking face method can be applied to video portrait editing. Since our
method can edit expression only, the edited cropped face can be pasted back to the full image simply. As our method is subject-agnostic, it
can be used to edit any unseen video as well, which is different from subject-dependent video editing methods such as DVP [19].

Abstract

One-shot video-driven talking face generation aims at
producing a synthetic talking video by transferring the facial
motion from a video to an arbitrary portrait image. Head
pose and facial expression are always entangled in facial
motion and transferred simultaneously. However, the entan-
glement sets up a barrier for these methods to be used in
video portrait editing directly, where it may require to modify
the expression only while maintaining the pose unchanged.
One challenge of decoupling pose and expression is the lack
of paired data, such as the same pose but different expres-
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sions. Only a few methods attempt to tackle this challenge
with the feat of 3D Morphable Models (3DMMs) for explicit
disentanglement. But 3DMMs are not accurate enough to
capture facial details due to the limited number of Blend-
shapes, which has side effects on motion transfer. In this
paper, we introduce a novel self-supervised disentanglement
framework to decouple pose and expression without 3DMMs
and paired data, which consists of a motion editing module,
a pose generator, and an expression generator. The editing
module projects faces into a latent space where pose motion
and expression motion can be disentangled, and the pose
or expression transfer can be performed in the latent space
conveniently via addition. The two generators render the



modified latent codes to images, respectively. Moreover, to
guarantee the disentanglement, we propose a bidirectional
cyclic training strategy with well-designed constraints. Eval-
uations demonstrate our method can control pose or expres-
sion independently and be used for general video editing.

1. Introduction

Talking face generation has seen tremendous progress
in visual quality and accuracy over recent years. Literature
can be categorized into two groups, i.e., audio-driven [23]
and video-driven [16]. The former focuses on animating
an unseen portrait image or video with a given audio. The
latter aims at animating with a given video. Talking face
generation has a variety of meaningful applications, such as
digital human animation, film dubbing, etc. In this work, we
target video-driven talking face generation.

Recently, most methods [16, 26, 36, 39, 44] endeavor to
drive a still portrait image with a video from different per-
spectives, i.e., one-shot talking face generation. But only a
few [19, 21, 30] make effort to reenact the portrait in a video
with another talking video, i.e., video portrait editing. This is
a more challenging task because edited faces are required to
paste back to the original video and temporal dynamics need
to be maintained. Several methods [19, 28] provide personal-
ized solutions to this challenge by training a model on the
videos of a specific person only. However, the learned model
cannot generalize to other identities as the personalized train-
ing heavily overfits the facial motion of the specific person
and the background. For general video portrait editing, there-
fore, resorting to the generalization property of one-shot
talking face generation might be a feasible solution.

One-shot methods can transfer facial motion from a driv-
ing face to a source one, resulting in that the edited face
mimics the head pose and facial expression* of the driving
one. The facial motion consists of entangled pose motion
and expression motion, which are always transferred simul-
taneously in previous methods. However, the entanglement
makes those methods unable to transfer pose or expression
independently. Since the input to the processing network is
always the cropped face rather than the full original image,
if the pose is modified along with the expression, the paste-
back operation can cause noticeable artifacts around the crop
boundary, e.g., twisted neck and inconsistent background.
Consequently, most one-shot methods face this obstacle pre-
venting their application to general video portrait editing.

One challenge to disentangle pose and expression is the
lack of paired data, such as the same pose but different ex-
pressions, or vice versa. In the literature, there are only a
few exceptions that can get rid of this limitation, e.g., PIRen-

*Note that facial expression here differs from emotion.

derer [25] and StyleHEAT [41], which are based on 3D
Morphable Models (3DMMs) [3], a predefined parametric
representation that decomposes expression, pose, and iden-
tity. However, the 3DMM-based methods heavily depend on
the decoupling accuracy of the 3DMM parameters, which
is far from satisfactory to reconstruct facial details due to
the limited number of Blendshapes. Besides, optimization-
based 3DMM parameter estimation is not efficient while
learning-based estimation will introduce more errors.

In this work, we propose a novel self-supervised dis-
entanglement framework to decouple pose and expression,
breaking through the limitation of paired data without us-
ing 3DMMs. Our framework has a motion editing module,
a pose generator, and an expression generator. The editing
module projects faces into a latent space where coupled pose
and expression motion in a latent code can be disentangled
by a network. Then, pose or expression transfer can be per-
formed by directly adding the latent code of a source face
with the disentangled pose or expression motion code of
a driving face. Finally, the two generators render modified
latent codes to images. More importantly, to accomplish the
disentanglement without paired data, we introduce a bidirec-
tional cyclic training method with well-designed constraints.
Specifically, given a source face S and a driving one D, we
transfer the expression and pose from D to S sequentially,
resulting in two synthetic faces, S′ and S′′. Since there is
no paired data, no supervision is provided for S′. To tackle
the missing supervision, we exchange the role of S and D
to transfer the pose and expression motion from S to D,
resulting in D′ and D′′. The distance between D′ and S′ is
one constraint for learning. However, it is still not enough
for disentangling pose and expression. Then, we discover
another core constraint, i.e., face reconstruction. When S
and D are the same, S′ and D′ are exactly the same as S and
D, respectively. More analyses will be presented in Sec. 3.

Our main contributions are three-fold:

• We propose a self-supervised disentanglement frame-
work to decouple pose and expression for independent
motion transfer, without using 3DMMs and paired data.

• We propose a bidirectional cyclic training strategy with
well-designed constraints to achieve the disentangle-
ment of pose and expression.

• Extensive experiments demonstrate that our method can
control pose or expression independently, and can be
used for general video editing.

2. Related Work
2.1. Talking-face Generation

2D-based methods. The early works [2, 34, 37] are dom-
inated by subject-dependent methods that can only work



on a specific person because their models are trained on
the video of the specific person. Then, several methods
[33, 43] attempt to fine-tune a pre-trained model on the
data of a target person for individual use. Recently, more
works focus on learning a one-shot subject-agnostic model
[1, 4–6, 14, 15, 24, 26, 27, 42, 43, 47], i.e., the trained model
can be generally applied to an unseen person. There are
some methods [31, 32] using GAN for face reenactment.
And FOMM [26] is a representative method that combines
motion field estimation and first-order local affine trans-
formations with the help of sparse keypoints. After that,
Face-vid2vid [35] makes an improvement to FOMM and
learns unsupervised 3D keypoints. LIA [36] has the similar
formulation of relative motion as FOMM but learns the se-
mantically meaningful directions in latent space instead of
using keypoints. However, these methods can only edit a still
portrait since pose and expression are coupled in the facial
motion.

3D model-based methods. Early works [29, 30] usually
build a 3D model for a specific person. Then, a range of
approaches [7] focus on using 3D morphable models [3] that
explicitly decompose expression, pose, and identity. DVP
[19] extracts 3DMM parameters of the source and target
faces, and the face manipulation is achieved by exchanging
their 3DMM parameters. However, these learned models are
subject-dependent and cannot generalize. Recently, more
methods [8,12,13,25,38] target subject-agnostic talking face
generation.

2.2. Decoupling

Several works [9,26,35,36,40] focus on the detachment of
identity-specific and motion-related information to achieve
cross-ID driving, but they do not distinguish pose motion
from expression motion. Only a few works target the disen-
tanglement of pose and expression for talking face genera-
tion. Almost all of them [8,25,41] are based on 3DMMs that
explicitly decouple pose and expression. PIRenderer [25]
extracts the 3DMM parameters for a driving face through a
pre-trained model and then predict the flow given a source
face and the 3DMM parameters. During inference, it can
transfer only the expression from the driving face by replac-
ing the expression parameters of the source face with those
of the driving one. StyleHEAT [41] follows the similar way
based on a pre-trained StyleGAN. However, the performance
of these methods heavily depend on the accuracy of 3DMMs.
3DMMs are known to be not particularly accurate for face
reconstruction due to the limited number of Blendshapes.
They have difficulty delineating facial details of face shape,
eye, and mouth, which may eventually have side effects on
the synthetic results. In this work, instead of using 3DMMs,
we decompose pose and expression by the proposed self-
supervised disentanglement framework with a bidirectional
cyclic training strategy.

3. The Proposed Method
To apply one-shot talking face generation for general

video editing, the disentanglement of pose and expression is
indispensable to handle the paste-back operation, i.e., past-
ing the edited cropped face to the full image. In this work,
we propose a self-supervised disentanglement framework
without paired data and the predefined 3DMMs. The whole
pipeline is illustrated in Fig. 2. Our model contains three
learnable components, i.e., the motion editing module, the
expression generator, and the pose generator. To accomplish
the disentanglement, we propose a bidirectional cyclic train-
ing strategy to compensate for the missing paired data in
which pose or expression are edited individually. We first
introduce the three components in Sec. 3.1. We then present
the training strategy in Sec. 3.2, followed by the learning
objective functions in Sec. 3.3.

3.1. Architecture

Motion Editing Module. As shown in Fig. 2, given a
source image, a driving one, and an editing indicator, the
motion editing module yields out an edited latent code and
the multi-scale feature maps of the source image. The indi-
cator tells either pose or expression of the source image to
be edited. Inside the module, an encoder is used to project
an input image to a latent space that is supposed to be de-
composable into two orthogonal subspaces. Let S, D, and O
denote the source image, the driving one, and the indicator,
respectively. Let E denote the encoder. Then, we have:

c = E(X), (1)

where X is the input of the encoder and c represents the
output latent code. cs = E(S) and cd = E(D) are the
latent codes of S and D.

As the driving image provides the facial motion reference,
a motion encoder is required to project an image to the same
latent space of the encoder. Instead of using an separate
encoder, we construct the motion space based on the latent
space of the encoder. Specifically, we use several multiple
perceptron (MLP) layers to disentangle the latent space of the
encoder to two orthogonal subspaces, i.e., the pose motion
space and the expression motion space. The architecture of
the disentanglement module is that the first few MLP layers
act as the shared backbone, followed by two heads that are
also composed of MLP layers. The disentanglement process
can be formulated as:

e,p = MLP(c), (2)

where e and p represent the expression and pose motion
code, respectively. They share the same dimension as c.

For motion editing, we apply an indicator to specify either
pose or expression to edit, which is a binary variable. When
O = pose, only the pose motion is transferred to the source
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Figure 2. Illustration of our proposed model. The framework consists of three learnable components, i.e., the motion editing module, the
expression generator, and the pose generator. The editing module projects the source and driving images into a latent space where pose
motion and expression motion can be disentangled, and then modifies the latent code of the source image according to a given indicator that
points out either expression or pose to edit. It outputs an edited latent code and the feature maps of the source image. The pose and expression
generators are applied to render the outputs of the editing module to a face image. These two generators share the same architecture but
different parameters for interpreting the pose and expression code respectively.

image. When O = exp, the expression is transferred. One
benefit of disentangling motion in the latent space of the
encoder is that motion transfer can be performed by a simple
addition, e.g.,, the expression editing can be defined as:

ce = c+ e, (3)

where ce represents the edited code with expression transfer.
Similar, we have the pose editing, i.e., cp = c+ p.

Let M denote the motion editing module. The whole
process can be defined as:

c,F = M(S,D,O), (4)

where F = {Fk}K represents the feature maps of the source
image, extracted from the encoder. K is the number of blocks
in the encoder. Both the latent code and the feature maps are
from the encoder. The former represents high-level informa-
tion while the latter represents mid-level information.
Pose and Expression Generators. The pose or expression
of the source image is edited in the latent space by adding the
pose or expression motion from the driving one. Since pose
motion captures the global head movement while expression
motion captures the local movements of facial components,
we use two individual generators for better interpretation of
the edited latent code, i.e., the expression generator Ge and
the pose generator Gp . The two generators share the same
architecture but different parameters.

Inspired by the flow-based methods [25, 26], we use flow
fields to manipulate the feature maps. Fig. 2 gives an illus-

tration of the generators. Similar to the pipeline of Style-
GAN2 [18], we exploit the latent code to generate multi-
scale flow fields that are used to warp the feature maps from
the encoder in the motion editing module. The warped fea-
ture maps are aggregated to render an image. The expression
generator can be defined as:

Ye = Ge(c,F), (5)

where Ye is the output image of the expression generator.
Similar, the pose generator is Yp = Gp(c,F).

3.2. Bidirectional Cyclic Training Strategy

As shown in Fig. 3, the pipeline is designed for editing
expression and pose independently and sequentially. By ex-
tracting two frames from a video as input, we can provide
supervision at the end of the pipeline. However, only such
supervision is not enough to disentangle pose and expression.
Without supervision for the intermediate result (i.e., the out-
put of the expression generator), all the subnetworks will be
treated as one network as a whole to complete the reconstruc-
tion task with no effort to distinguish the responsibilities of
the two generators.

We give a simple illustration in Fig. 4(a). The task is to
scale a large square to a small one in two steps within the
range of the gray square. Without any constraint, the inter-
mediate result of the first step can be any rectangle in the
range (see the top of Fig. 4(a)). Given the constraint that the
height should be the same as the width, the solution space
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can be greatly narrowed and the intermediate result becomes
to be with the property (see the bottom of Fig. 4(a)). There-
fore, in our case, given no paired data, we should design
a certain constraint to guarantee the disentanglement prop-
erty of the framework. Otherwise, the intermediate face of
the expression generator can be in any shape as long as the
pose generator can interpret it. We further give an illustration
from the perspective of the parameter space in Fig. 4(b). Let
θm, θe, and θp denote the parameters of the motion editing
module, the expression generator, and the pose generator, re-
spectively. For the simplicity of explanation, we assume the
motion editing module is optimal, i.e., θ∗m. Without paired
data, the solution can be any combination of θe and θp if
they are able to reconstruct the driving image during training.
If effective constraints are discovered, the solution space can
be narrowed and the meaningful solution can be obtained to
own the property emphasized by the constraints.

To ensure the disentanglement, we propose a bidirectional
cyclic training strategy without paired data, which is illus-
trated in Fig. 3. Let e(S,D) denote expression transfer from
D to S, i.e.,

S′ = e(S,D) = Ge(M(S,D,O = exp)), (6)

where S′ is the expression transfer result. Let p(S′, D) de-
note pose transfer from D to S′, i.e.,

S′′ = p(S′, D) = Gp(M(S′, D,O = pose)), (7)

where S′′ is the pose transfer result. Similarly, we exchange
roles of the source and driving images to transfer the pose
and expression of the source image to the driving one sequen-
tially. Then, we have D′ = p(D,S) with pose transferred
from S, and D′′ = e(D′, S) with expression from S.

Given tuples < S, S′, S′′ > and < D,D′, D′′ >, we
can design a set of constraints for the disentanglement. As
shown in Fig. 3, the three dash lines indicate that three pairs
of images can be used to compute reconstruction losses, i.e.,
< S′′, D >, < D′′, S >, and < S′, D′ >. Please note that
though the pair < S′, D′ > can constrain the intermediate
result and narrows the solution space, but it still cannot
ensure the disentanglement of pose and expression and the
intermediate result is even not face.

Fortunately, we discover that the self-reconstruction of the
two generators is core for the disentanglement, i.e., the pair
< S, e(S, S) > and < S, p(S, S) >. Such pairs encourage
the generators to output meaningful face and encourage the
editing module to extract the accurate pose and expression
motion. Otherwise, the generators’ outputs will never be
the same as the input and there will be always a distance
between the two images of a pair.

The roles of the two generators are determined by asym-
metric backpropagation and the expression loss (Eq. 10).
In practice, we observe that pose transfer is much easier to
achieve than expression transfer. Hence, when computing
the losses for the predicted pair < S′, D′ > without ground
truth, we truncate the gradient of pose generator to construct
asymmetric backpropagation, i.e., those losses are not used
to update pose generator, encouraging the two generators
to play different roles. Besides, The expression loss helps
the assignment of the responsibilities to the two generators.
Because in Fig. 3, LE(S

′, D) encourages e(S,D) to change
the expression of S while LE(D

′, D) encourages p(D,S)
not to change the expression of D.

Theoretically, there are many such solutions satisfying
current constraints. However, experimentally, we observe
the disentanglement can be always achieved with current
constraints. In the early training stage, the pose generator
takes charge of all pose transfer and a part of expression
transfer while the expression generator takes charge of par-
tial expression transfer only. As training goes on, the two
generators tend to take charge of their own responsibilities.
One reason is that pose transfer is relatively easier to achieve
than expression transfer. The model learns the pose part well
first. Then in the late training stage, the model focuses on
removing expression from the pose generator.

3.3. Loss Functions

Reconstruction loss LC . The Mean Absolute Error
(MAE) is used to compute the errors between two images in
the three pairs:

Lrec = LC(S
′′, D) + LC(D

′′, S) + LC(S
′, D′). (8)
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Figure 5. Visual comparisons of independent editing of pose and expression.

Perceptual loss LP . To make the synthetic results look
more realistic, we also apply the perceptual loss [17] to the
three pairs as well as the two self-reconstruction pairs:

Lper = LP (S
′′, D) + LP (D

′′, S) + LP (S
′, D′)

+ LP (e(S, S), S) + LP (p(S, S), S).
(9)

Expression loss LE . To help with the disentanglement of
pose and expression, inspired by spectre [11], an expression
recognition network [10] is utilized to obtain the feature
vectors. Then we minimize the distance between the fea-
ture vectors of the ground-truth and intermediate synthetic
images:

Lexp = LE(S
′, D) + LE(D

′, D). (10)

GAN loss LG. We adopt the non-saturating adversarial
loss as our adversarial loss. We also use a discriminator to
distinguish reconstructed images from the original ones:

Ladv = LG(S
′′) + LG(D

′′). (11)

Overall, the full objective function is defined as:

L = Lrec + λpLper + λeLexp + Ladv, (12)

where λp and λe are the trade-off hyper-parameters.

4. Experiments
4.1. Settings

Datasets. We train our model on the VoxCeleb dataset
[22] that includes over 100K videos of 1,251 subjects. Fol-
lowing [26], we crop faces from the videos and resize them
to 256 × 256. Faces move freely within a fixed bound-
ing box and no need to align. For evaluation, the test set
contains videos from the VoxCeleb dataset and the HDTF

dataset [46], which are unseen during training. We collect
15 image-video pairs of different identities from the test
set. For same-identity reenactment, we use the first frame
as the source image and the last 400 frames as the driving
images. For cross-identity reenactment, we use the first 400
video frames to drive the image in each image-video pair.
Hence, we can obtain 6K synthetic images for each method
for evaluation.

Metrics. We utilize a range of metrics to evaluate image
quality and motion transfer quality. For same-identity evalua-
tion, peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and learned perceptual image patch similarity
(LPIPS) [45] are used to measure the reconstruction quality.
And the cosine similarity (CSIM) of identity embedding is
used to measure identity preservation. For cross-identity and
video portrait editing evaluation, AED and APD from PIRen-
der [25] are used to calculate the average 3DMM expression
and pose distance between the generated images and targets
respectively.

Implementation details. We train the model in two
stages. In the first stage, the three components are jointly
optimized for 100K iterations. As the expression motion
captures local details of facial components, the expression
generator is more difficult to learn than the pose generator.
Hence, in the second stage, we learn the expression generator
for 50K iterations with fixing the parameters except those
of MLPs in the motion editing module and the parameters
of the pose generator. We set λp = 20 and λe = 20. The
batch size is 32. Adam [20] is selected as the optimizer with
the learning rate of 0.002 for the first stage and 0.0008 for
the second one. During inference, the two generators can
be used independently or jointly with the motion editing
module. Please refer to the supplementary for more details.



Method Same-Identity Reenactment Cross-Identity Reenactment
CSIM ↑ AED ↓ APD ↓ CSIM ↑ AED ↓ APD ↓

PIRenderer [25] 0.9075 0.1205 0.01254 0.9133 0.2674 0.01182
StyleHEAT [41] 0.8320 0.1511 0.01551 0.8489 0.2701 0.01695
Ours 0.9091 0.1133 0.01720 0.9204 0.2660 0.02464

Table 1. Quantitative comparisons on expression editing.

Method Same-Identity Reenactment Cross-Identity Reenactment
CSIM ↑ AED ↓ APD ↓ CSIM ↑ AED ↓ APD ↓

PIRenderer [25] 0.9055 0.0972 0.01718 0.8406 0.1397 0.02533
StyleHEAT [41] 0.8358 0.1285 0.02975 0.8058 0.1577 0.03025
Ours 0.9192 0.0807 0.02459 0.8798 0.1250 0.03630

Table 2. Quantitative comparisons on pose editing.
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S
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D

Figure 6. Qualitative comparisons for video expression editing.

4.2. Disentanglement for Video Portrait Editing

Only a few one-shot talking head methods can edit ex-
pression or pose independently and be applicable to gen-
eral video portrait editing. Their disentanglement are almost
based on the pre-defined 3DMMs while our method is a
self-supervised disentanglement without using 3DMMs. We
compare with two state-of-the-art methods that are open-
sourced, i.e., PIRender [25] and StyleHEAT [41].

Qualitative Evaluation. The visual comparisons are
shown in Fig. 5. The analyses are summarized as follows.
First, our method achieves better accuracy in expression
transfer than the other two methods, especially the eyes and
the mouth shape (see Fig. 5(a)). For instance, as shown in the
third row, the eyes of the face synthesized by PIRender are
‘open up’ while those of the driving image are ‘closed’.
Our method preserves the eye status better. In the first and
second row, our method captures better mouth movement.
The reason is that the extracted 3DMM parameters by a pre-
trained network cannot accurately reflect the status of eyes
and mouth due to the limited number of Blendshapes.

Second, our method preserves the identity better than
other two methods in pose transfer (see Fig. 5(b)). It can
be observed that PIRender and StyleHEAT tend to change
the face shape of the source image if the face shape of the
driving image differs from the source.

Quantitative Evaluation. The quantitative comparisons
of expression and pose editing are shown in Tab. 1 and Tab. 2,
respectively. It can be observed that our method achieves

better performance in identity and expression preservation
in all testing scenarios. These results are consistent with the
observations in the visual results. However, our performance
in pose preservation is slightly worse than PIRender. Because
3DMM is learned from high-quality 3D scans. Its parameters
have separate dimensions for identity, expression, and pose
(i.e., pitch, yaw, and roll). Though the limited number of
blendshapes in 3DMM limits the representational capacity
for the expression, the pose is simple and can be accurately
represented. Besides, another model for estimating 3DMM
parameters from images is also trained on a large dataset with
a wide variety of poses, which can predict accurate poses.
While our method with no prior model defines pose motion
in the latent space and the disentanglement is only learned
on Vox from scratch. Using the prior model and the 3DMM
parameter estimator trained on additional datasets could be
one reason for the 3DMM-based models outperforming ours
in APD. Besides, please note that the APD difference of 0.01
is nearly visually invisible by humans. The corresponding
average difference of pitch, yaw, and roll is about 0.57◦ =
0.01 ∗ 180/π. Also, we conduct a user study by asking 20
human raters to answer 15 multiple-choice questions for
expression transfer and 15 for pose transfer. In each question,
a rater chooses the best from two synthetic videos generated
by PIRender and ours. For expression transfer, our method
has a selection rate of 83%, while the rate is 58% for pose
transfer.

Video Portrait Editing. The obstacle of applying one-
shot talking face generation method to video expression
editing is the paste-back operation, i.e., pasting the edited
cropped image to the full image. If the pose is changed, the
edited image cannot be pasted back anymore. Benefiting
from the disentanglement of pose and expression, only meth-
ods that can edit expression independently can be used for
video editing. Fig. 6 illustrates the comparisons between our
method and other methods. Our method achieves the better
visual quality. For these methods, the edited face is blended
into the full image with a simple Gaussian blur on the bound-
aries. More videos are provided in the supplementary.

4.3. One-shot Talking Face Generation

Our pose and expression generator can be used jointly
to transfer both pose and expression from a driving image
to a source one. Hence, we also compare with several state-
of-the-art methods that can only edit pose and expression
simultaneously. The competing methods are FOMM [26],
PIRenderer [25], LIA [36], and DaGAN [16]. We use their
released pre-trained models.

The qualitative comparisons are shown in Fig. 7. The
results of FOMM are reported in the supplementary. For
same-identity reenactment, our method achieves comparable
performance to DaGAN and LIA, and outperforms PIRen-
der. PIRender cannot preserve face shape and capture the



Method Same-Identity Reenactment Cross-Identity Reenactment
CSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ APD ↓ AED ↓ CSIM ↑ AED ↓ APD ↓

FOMM [26] 0.8960 0.1536 31.1134 0.6251 0.1000 0.01100 0.8101 0.2570 0.02592
PIRender [25] 0.8829 0.1713 30.7609 0.5541 0.1110 0.01698 0.8215 0.2458 0.02677
LIA [36] 0.8906 0.1458 31.3371 0.6397 0.0998 0.01160 0.8094 0.2659 0.02601
DaGAN [16] 0.8910 0.1599 30.3022 0.5904 0.1036 0.01202 0.8032 0.2584 0.02639
Ours 0.8965 0.1587 31.3631 0.6422 0.1000 0.01087 0.8303 0.2612 0.02565

Table 3. Quantitative comparisons with state-of-the-art methods on one-shot talking face generation.

Source Ours DrivingPIRenderer DaGAN LIA

Figure 7. Comparisons with the state-of-the-art methods.

Source Ours Drivingw/o Refinement

Figure 8. Qualitative ablation studies. The refinement stage helps
produce the more realistic images.

mouth movement well. For cross-identity reenactment, the
performance of our method is comparable to LIA. Both LIA
and our method are much better than PIRender and DaGAN.

The quantitative comparisons are shown in Tab. 3. Our
method is comparable to other methods.

4.4. Ablation Studies

Refinement Stage. Since pose motion captures the global
head movement and expression motion captures the local
subtle movement of facial components, we find that expres-
sion motion is more difficult to learn than pose motion. We

Figure 9. Qualitative ablation studies. The self-reconstruction con-
straint helps produce the reasonable faces.

fine-tune the expression generator after the joint training
of all modules. We present the visual improvement of the
refinement in Fig. 8.

Self-reconstruction Constraint. We reveal that the self-
reconstruction constraint for the generators is the core of
the disentanglement in the end of Sec. 3.2. We present the
intermediate and final results of the forward pass of the
framework with or without using the constraint in Fig. 9.
The whole framework is hard to train without the constraint
and cannot generate meaningful faces.

5. Conclusion

We propose a novel self-supervised disentanglement
framework to decouple pose and expression without 3DMMs
and paired data. With the powerful editable latent space
where pose motion and expression motion can be disentan-
gled, our method can perform pose or expression transfer in
this space conveniently via addition. It enables independent
control over pose and expression and is better than 3DMMs
in terms of facial expression details with the help of our
model.

Acknowledgment

This work was partially supported by the National
Natural Science Foundation of China (62102418 and
62172415), the CCF-Tencent Rhino-Bird Research Fund
(No: RAGR20210124), and the Open Project Program of
State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University (No.VRLAB2022C05).



References
[1] Hadar Averbuch-Elor, Daniel Cohen-Or, Johannes Kopf, and

Michael F Cohen. Bringing portraits to life. ACM TOG,
36(6):1–13, 2017. 3

[2] Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser
Sheikh. Recycle-gan: Unsupervised video retargeting. In
ECCV, pages 119–135, 2018. 2

[3] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. In SIGGRAPH, page 187–194, 1999.
2, 3

[4] Egor Burkov, Igor Pasechnik, Artur Grigorev, and Victor Lem-
pitsky. Neural head reenactment with latent pose descriptors.
In CVPR, pages 13786–13795, 2020. 3

[5] Lele Chen, Ross K Maddox, Zhiyao Duan, and Chenliang
Xu. Hierarchical cross-modal talking face generation with
dynamic pixel-wise loss. In CVPR, pages 7832–7841, 2019.
3

[6] Kun Cheng, Xiaodong Cun, Yong Zhang, Menghan Xia, Fei
Yin, Mingrui Zhu, Xuan Wang, Jue Wang, and Nannan Wang.
Videoretalking: Audio-based lip synchronization for talking
head video editing in the wild. In SIGGRAPH Asia 2022
Conference Papers, pages 1–9, 2022. 3

[7] Michail Christos Doukas, Mohammad Rami Koujan, Vik-
toriia Sharmanska, Anastasios Roussos, and Stefanos
Zafeiriou. Head2head++: Deep facial attributes re-targeting.
IEEE Transactions on Biometrics, Behavior, and Identity Sci-
ence, 3(1):31–43, 2021. 3

[8] Michail Christos Doukas, Stefanos Zafeiriou, and Viktoriia
Sharmanska. Headgan: One-shot neural head synthesis and
editing. In ICCV, pages 14398–14407, 2021. 3

[9] Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Aleksei
Ivakhnenko, Victor Lempitsky, and Egor Zakharov. Megapor-
traits: One-shot megapixel neural head avatars. 2022. 3

[10] Yao Feng, Haiwen Feng, Michael J. Black, and Timo Bolkart.
Learning an animatable detailed 3D face model from in-the-
wild images. ACM TOG, 40(8), 2021. 6

[11] Panagiotis P. Filntisis, George Retsinas, Foivos Paraperas-
Papantoniou, Athanasios Katsamanis, Anastasios Roussos,
and Petros Maragos. Visual speech-aware perceptual 3d facial
expression reconstruction from videos, 2022. 6

[12] Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkel-
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