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Abstract

This work presents an accurate and robust method for esti-
mating normals from point clouds. In contrast to predecessor
approaches that minimize the deviations between the anno-
tated and the predicted normals directly, leading to direction
inconsistency, we first propose a new metric termed Chamfer
Normal Distance to address this issue. This not only miti-
gates the challenge but also facilitates network training and
substantially enhances the network robustness against noise.
Subsequently, we devise an innovative architecture that en-
compasses Multi-scale Local Feature Aggregation and Hier-
archical Geometric Information Fusion. This design empow-
ers the network to capture intricate geometric details more
effectively and alleviate the ambiguity in scale selection. Ex-
tensive experiments demonstrate that our method achieves
the state-of-the-art performance on both synthetic and real-
world datasets, particularly in scenarios contaminated by
noise. Our implementation is available at https://github.com/
YingruiWoo/CMG-Net Pytorch.

1 Introduction
Normal estimation is a fundamentally important task in the
field of point cloud analysis, which enjoys a wide variety of
applications in 3D vision and robotics, such as surface re-
construction (Fleishman, Cohen-Or, and Silva 2005; Kazh-
dan, Bolitho, and Hoppe 2006), denoising (Lu et al. 2020b)
and semantic segmentation (Grilli, Menna, and Remondino
2017; Che and Olsen 2018). In recent years, many powerful
methods have been developed to enhance the performance
of normal estimation. However, these approaches involving
both traditional and learning-based ones often suffer from
heavy noise and struggle to attain high-quality results for
point clouds with complex geometries.

Traditional methods (Hoppe et al. 1992; Levin 1998;
Cazals and Pouget 2005) typically encompass fitting local
planes or polynomial surfaces and inferring normal vectors
from the fitted outcomes. Although straightforward, these
approaches are vulnerable to noise and encounter challenges

*These authors contributed equally.
†Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

npi

Modified

Prediction Error

Annotation Error

npi

npi

npi

Input Ours

HSurf-Net AdaFit DeepFit
20.28

21.7221.13 23.01 0

60

SHS-Net

20.70Noise: σ = 0.12%

CND-modified GT Normal

Annotated GT Normal

Predicted Normal

(a) (b)

Figure 1: (a) Comparison between the annotated and the
proposed CND-modified normals, where the latter is more
consistent with the underlying surface geometry. (b) Our
method outperforms competitors with higher robustness to
noise and intricate shape details (indicated by the heat map).

when attempting to generalize to complex shapes. Further-
more, their performance hinges significantly on the meticu-
lous tuning of parameters.

In comparison with traditional approaches, learning-
based proposals (Guerrero et al. 2018; Ben-Shabat et al.
2019; Hashimoto and Saito 2019; Zhou et al. 2020; Wang
and Prisacariu 2020; Lenssen, Osendorfer, and Masci 2020;
Ben-Shabat et al. 2020; Cao et al. 2021; Zhu et al. 2021;
Zhou et al. 2022b; Zhang et al. 2022; Li et al. 2022a,b;
Du et al. 2023; Li et al. 2023a) have better generalization
and less dependency on parameter tuning. There are two
types of learning-based normal estimators comprising deep
surface fitting and regression. The former predicts point-
wise weights of the input point cloud patch and derives a
polynomial surface by weighted least-squares (WLS) fitting.
However, due to the fixed order of polynomial functions,
deep surface fitting usually grapples with overfitting or un-
derfitting when dealing with various surfaces. On the con-
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trary, regression-based methods adopt Multi-Layer Percep-
tion (MLP) to extract features of the input patch and directly
regress normal vector from these features. Benefiting from
their strong feature extraction capability, recent regression-
based methods have advanced normal estimation for clean
point clouds. However, they have not made substantial head-
way in improving normal estimation on point clouds that are
affected by noise.

To address noisy normal estimation issues, in this pa-
per, we first analyze the normal estimation deviation pro-
duced by noisy point clouds, and then point out the incon-
sistency between the annotated (ground-truth) normal and
the input patch, as illustrated in Fig. 1(a). We find that this
direction inconsistency indeed significantly affects the net-
work training and the output evaluation, also degrading the
downstream tasks such as surface reconstruction. The rea-
son is that when point coordinates change significantly due
to noisy influence, their neighborhood geometry and nor-
mals change accordingly, while the annotated normals are
fixed. To deal with this problem, instead of using the con-
ventional Root of Mean Squared Error (RMSE), we pro-
pose a more reasonable metric for normal estimation termed
Chamfer Normal Distance (CND), which replaces the orig-
inal annotated normal vector with the normal of the closest
point locating on the potential clean point cloud. Moreover,
we minimize the loss function modified by CND to reduce
the disturbance of inconsistency deviations during training.
We show that our newly defined loss function achieves much
higher normal estimation accuracy than competitors on a set
of benchmark datasets.

Furthermore, we develop a novel network framework
named CMG-Net, integrating the CND-modified loss with
multi-scale geometric structures, for more stable and robust
normal estimation. Unlike previous approaches that merely
capture a single scale of local or global features, CMG-Net
performs a multi-scale feature extraction followed by inte-
gration through an attention layer. This greatly facilitates the
network capability to capture intricate geometric details and
address the ambiguity of the optimal scale selection. More-
over, we further combine the local and global features from
various scales together in the hierarchical architecture to in-
crease the multi-scale information for network inference.

We conduct extensive experiments to validate the de-
veloped method and compare it with the state-of-the-art
(SOTA) approaches on various benckmark datasets includ-
ing PCPNet (Guerrero et al. 2018) and the indoor SceneNN
dataset (Hua, Tran, and Yeung 2018). Results demonstrate
that our method outperforms baselines by a large margin,
especially on point clouds with noise, and those with intri-
cate geometric details and various distribution density. To
summarize, our main technical contributions are threefold
as follows:

• We propose a new method that integrates the CND met-
ric for robust normal estimation, which solves the direc-
tion inconsistency problem effectively and significantly
boosts network training and inference.

• We design a novel network that incorporates multi-scale
feature extraction along with hierarchical inference com-

bined with intricate geometry information fusion, which
is capable of capturing intricate geometric details and ad-
dressing the challenge of scale selection ambiguity.

• We perform comprehensive experiments to demonstrate
the enhancements brought by our proposed method,
thereby pushing the boundaries of SOTA performance,
especially on noisy normal estimation scenarios.

2 Related Work
2.1 Traditional Methods
Principal Component Analysis (PCA) (Hoppe et al. 1992)
stands as the most widely adopted point cloud normal es-
timation method, which fits a plane to the input surface
patch. Subsequent variants involving Moving Least Squares
(MLS) (Levin 1998), truncated Taylor expansion fitting (n-
jet) (Cazals and Pouget 2005), local spherical surface fit-
ting (Guennebaud and Gross 2007) and multi-scale ker-
nel (Aroudj et al. 2017) are proposed to reduce the noisy
influence through selecting larger patches and employing
more intricate energy functions. Nevertheless, these ap-
proaches typically tend to oversmooth sharp features and
geometric details. To circumvent these issues, Voronoi di-
agram (Amenta and Bern 1998; Alliez et al. 2007; Mérigot,
Ovsjanikov, and Guibas 2010), Hough transform (Boulch
and Marlet 2012), and plane voting (Zhang et al. 2018) are
deployed in normal estimation. However, these techniques
depend on manual parameter tuning heavily, which hinders
their practical applications.

2.2 Learning-based Methods
With the powerful development of neural network, learning-
based normal estimation achieves better performance and
less dependence of parameter tuning than traditional ap-
proaches. They can be generally divided into two categories:
deep Surface fitting and regression-based approaches.

Deep surface fitting methods. These methods typically
employ a deep neural network to predict point-wise weights
and then fit a polynomial surface to input patches using WLS
such as IterNet (Lenssen, Osendorfer, and Masci 2020) and
DeepFit (Ben-Shabat et al. 2020). Analogously, Zhang et
al. (2022) adopted the predicted weights as the guiding ge-
ometric information. AdaFit (Zhu et al. 2021) proposed a
novel layer to aggregate features from multiple global scales
and then predicted point-wise offset to improve the nor-
mal estimation accuracy. To learn richer geometric features,
GraphFit (Li et al. 2022a) combined graph convolutional
layers with adaptive modules, while Du et al. (2023) an-
alyzed the approximation error of these methods and sug-
gested two fundamental design principles to further improve
the estimation accuracy. However, due to the constant order
of the objective polynomial functions, deep surface fitting
methods typically suffer from overfitting and underfitting.

Regression-based methods. This type casts the normal
estimation problem as a regression process and predicts the
point cloud normals via the network straightforward. For in-
stance, HoughCNN (Boulch and Marlet 2016) transformed



point clouds into a Hough space and then utilized Convo-
lutional Neural Networks (CNN) to directly infer normal
vectors, whereas Lu et al. (2020a) projected point clouds
into a height map by computing distances between scatter
points and the fitted plane. However, these approaches sac-
rifice the 3D geometry unavoidably when executing in 2D
spaces. PCPNet (Guerrero et al. 2018) directly adopted the
unstructured point clouds as input and then used the Point-
Net (Qi et al. 2017a) to capture multi-scale features instead.
Hashimoto et al. (2019) combined PointNet with 3D-CNN
to extract local and spatial features, and NestiNet (Ben-
Shabat et al. 2019) employed mixture-of-experts framework
to determine the optimal normal estimation scale. To pro-
vide more information of the input patch, Refine-Net (Zhou
et al. 2022a) additionally calculated the initial normals and
the height map. Recent work involve HSurf-Net (Li et al.
2022b) and SHS-Net (Li et al. 2023a) first transformed point
clouds into a hyper space through local and global fea-
ture extractions and then performed plane fitting in the con-
structed space. NeAF (Li et al. 2023b) inferred an angle
field around the ground truth normal to make it learn more
information of the input patch. Benefiting from the strong
feature extraction abilities of the network architectures, re-
cent regression-induced approaches demonstrate promising
results on clean point clouds. However, they have yet made
significant progress in normal estimation on noisy point
clouds, which are often emerged in practical scenarios.

Aiming at improving the robustness to noise, we identify
a crucial inconsistency between the annotated normal and
the neighborhood geometry of the noisy point and introduce
CND to address this problem. Besides, compared with the
recent regression methods, we propose a network that com-
bines various geometric information extraction with a hierar-
chical architecture to make the complex information capture
more effectively.

3 Rethinking Noisy Normal Estimation
3.1 Direction Inconsistency
Previous learning-based approaches directly minimize the
deviations between the predicted normals and the anno-
tated ones for training and evaluation. This is reasonable
for noise-free scenarios, however, for the noisy point clouds,
due to the noise-caused relative coordinate changes, the an-
notated normals indeed are inconsistent with the neighbor-
hood geometry of the query points. As presented in Fig. 2(a),
given a set of noisy point clouds P , suppose the ground truth
position locating on the surface of the noisy point pi is p̃i.
The annotated normal of pi is npi

∈ R3, which is the same
as the one of the point before adding noise, and the normal of
p̃i is np̃i

∈ R3. If we optimize the typically defined normal
estimation loss ∥npi

− n̂pi
∥22 as predecessors, where n̂pi

is
the predicted normal, this will unavoidably lead to inconsis-
tency between the annotated normal npi

and the input patch
P i. What’s worse, this inconsistency greatly decreases the
quality of the training data and thus lowers down the estima-
tion ability of the network on noisy point clouds.

Moreover, this inconsistency also degrades downstream
tasks such as denoising and 3D reconstruction. For instance,
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Figure 2: (a) The annotated normal npi
of noisy point pi

determined before noisy disturbance indeed is inconsistent
with the input patch (dashed red ellipse). (b) The direction of
the normal np̃i

of the nearest clean point p̃i is more consis-
tent with the input patch. (c) The predicted offset d̂pi

cannot
drag pi to the noise-free underlying surface. (d) This incon-
sistency also arises for surface reconstruction assignments.

Fig. 2(c) shows the denosing principle for point clouds. If
we utilize the predicted normal vector n̂pi

, which closely
resembles the annotated normal vector npi

(indicating a
highly accurate estimation), then the introduced offset d̂pi

will not align or bring pi closer to the noise-free underly-
ing surface. Anonymously, in the context of reconstruction
tasks, as shown in Fig. 2(d), the regenerated mesh face F̂ i in
relation to the normal vector n̂pi

significantly deviates from
the authentic mesh fact F i.

3.2 Scale Ambiguity
Another challenge in current normal estimation approaches
is the ambiguity regarding the optimal scale in both local and
global feature extraction. Concerning local structures, using
large scales typically improves robustness against noise but
can lead to oversmoothing of shape details and sharp fea-
tures. Conversely, small scales can preserve geometric de-
tails but are relatively sensitive to noise. When it comes to
global features, large scales include more structure informa-
tion from the underlying surface but may also incorporate
irrelevant points, thus degrading the geometry information
of the input patch. On the other hand, small scales reduce
irrelevant points but are less robust to noise. Previous works
have struggled to effectively extract and combine multi-scale
local and global features, making them highly dependent on
scale selection and resulting in unsatisfactory performance
on both noisy point clouds and complex shape details.

4 Proposed Method
To solve the aforementioned issues, we propose a novel nor-
mal estimation approach that is robust against noise and less
sensitive to scale selection. Concrete technical contributions
are presented in the following.

4.1 Chamfer Normal Distance
To bridge the direction inconsistency between the annotated
normal and the predicted one of the input patch, instead of
using the conventional metric ∥npi

− n̂pi
∥22, inspired from
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the Chamfer Distance (CD)

C(P, P̂)=
1

N1

∑
pi∈P

min
p̂j∈P̂

(∥pi−p̂j∥
2
2)+

1

N2

∑
p̂j∈P̂

min
pi∈P

(∥pi−p̂j∥
2
2), (1)

where N1 and N2 represent the cardinalities of the point
cloud P and P̂ , we formulate the Chamfer Normal Distance
(CND) as

CND(P, P̃) =

√√√√ 1

N

N∑
i=1

arccos2 < np̃i
, n̂pi

>, (2)

where < ·, · > represents the inner product of two vectors
and p̃i is the closest point of pi in the noise-free point cloud
P̃ . In contrast to previous approaches that relied on anno-
tated normal correspondence, our proposed CND manner as-
sures consistency with the underlying geometric structure of
the input patch (Fig. 2(b)). The CND metric not only faith-
fully captures the prediction errors in noisy point clouds, but
also eliminates the direction inconsistency during network
training, thus substantially improving the network robust-
ness and facilitating the subsequent assignments.

4.2 CMG-Net
To capture more fruitful multi-scale structure information
and solve the scale ambiguity issue simultaneously, we de-
velop a network combining various geometric information
extraction with a hierarchical architecture termed CMG-Net.
Given a patch P = {pi ∈ R3}Ni=1 centralized at a query
point p, as shown in Fig. 3(a), CMG-Net first normalizes
the input points and rotates P by PCA and QSTN (Qi et al.
2017a; Du et al. 2023) to initialize the normal vectors. Then,
we group the local features by k-nearest neighbors (k-NN)
with different scales and aggregate them together. Besides,
we design a hierarchical structure with intricate geometry
information fusion, followed by the decoding of the embed-
ding features. Our loss function modified by CND enables
the network jumping out of the annotation inconsistency.

Multi-scale Local Feature Aggregation. Previous meth-
ods group the local features by k-NN and capture the ge-
ometric information by MLP and maxpooling (Li et al.
2022b). However, this manner often suffers from scale ambi-
guity and results in unsatisfactory robustness against noise.
To solve this issue, as presented in Fig. 3(b), we construct
graphs by k-NN with small and large scales and employ the
skip-connection and maxpooling to capture the local struc-
tures. The Local Feature Extraction (LFE) can be formu-
lated as

f
n+1
i =MaxPool

{
ϕ1

(
φ1

(
f
n
i

)
, φ1

(
f
n
i,j

)
, φ1

(
f
n
i − f

n
i,j

))}sl

j=1
, (3)

where fn
i,j is the neighbor feature of the feature fn

i , φ1 is
the MLP layer, ϕ1 is the skip-connection layer, and sl repre-
sents the scale of k-NN with l = 1, 2 in default. Moreover,
we use an Attentional Feature Fusion (AFF) architecture to
aggregate the features which can benefit both the small and
large scales. The AFF can be formulated as

M
(
f
s1
i

, f
s2
i

)
= sigmoid

(
φ2

(
AvgPool

{
f
s1
i

+ f
s2
i

}N

i=1

))
, (4)

fi = φ3
(
f
s1
i

· M
(
f
s1
i

, f
s2
i

)
+ f

s2
i

·
(
1 − M

(
f
s1
i

, f
s2
i

)))
, (5)

where fs1
i abd fs2

i are the local structures with different
scales of feature f i, φ2 and φ3 are the MLP layers, N rep-
resents the cardinality of the input point cloud patch.

Hierarchical Geometric Information Fusion. Recent
approaches have proven the effectiveness of multi-scale
global feature extraction (Qi et al. 2017b; Li et al. 2022b;
Qin et al. 2022), however, large scale global information
and local structures may be lost after point cloud downsam-
pling. To alleviate this problem, as shown in Fig. 3(c), we
propose a hierarchical architecture that combines the multi-
scale global features with the local structures. During the
Hierarchical Geometric Information Fusion, the global fea-
ture GNh

of current scale Nh can be formulated as

GNh
= φ5

(
MaxPool

{
φ4

(
fNh
i

)}Nh

i=1

)
, (6)



Table 1: Quantitative comparisons in terms of RMSE and CND on the PCPNet dataset. Bold values indicate the best estimator.

Method
RMSE CND

Noise (σ) Density Ave. Noise (σ) Density Ave.None 0.12% 0.6% 1.2% Stripes Gradient None 0.12% 0.6% 1.2% Stripes Gradient
PCA (Hoppe et al. 1992) 12.28 12.86 18.40 27.61 13.63 12.79 16.26 12.28 12.78 16.41 24.46 13.63 12.79 15.39
n-jet (Cazals and Pouget 2005) 12.32 12.82 18.34 27.77 13.36 13.09 16.29 12.32 12.77 16.36 24.67 13.36 13.09 15.43
PCPNet (Guerrero et al. 2018) 9.62 11.36 18.89 23.32 11.15 11.69 14.34 9.62 11.23 17.28 20.16 11.15 11.69 13.52
Nesti-Net (Ben-Shabat et al. 2019) 8.43 10.72 17.56 22.63 10.20 10.66 13.37 8.43 10.57 15.00 18.16 10.20 10.66 12.17
DeepFit (Ben-Shabat et al. 2020) 6.51 9.21 16.73 23.12 7.93 7.31 11.80 6.51 8.98 13.98 19.00 7.93 7.31 10.62
AdaFit (Zhu et al. 2021) 5.21 9.05 16.44 21.94 6.01 5.90 10.76 5.21 8.79 13.55 17.31 6.01 5.90 9.46
GraphFit (Li et al. 2022a) 4.49 8.69 16.04 21.64 5.40 5.20 10.24 4.49 8.43 13.00 16.93 5.40 5.20 8.91
HSurf-Net (Li et al. 2022b) 4.17 8.78 16.25 21.61 4.98 4.86 10.11 4.17 8.52 13.23 16.72 4.98 4.86 8.75
Du et al. (Du et al. 2023) 4.11 8.66 16.02 21.57 4.89 4.83 10.01 4.11 8.43 13.10 17.08 4.89 4.83 8.74
SHS-Net (Li et al. 2023a) 3.95 8.55 16.13 21.53 4.91 4.67 9.96 3.95 8.29 13.13 16.60 4.91 4.67 8.59
Ours 3.86 8.45 16.08 21.89 4.85 4.45 9.93 3.86 8.13 12.55 16.23 4.85 4.45 8.35
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Figure 4: AUC on the PCPNet dataset. X and Y axes are the angle threshold and the percentage of good point (PGP) normals.

where φ4 and φ5 are MLP layers. Meanwhile, the local
structures gNh+1

i are captured by

g
Nh+1
i = MaxPool

{
φ6

(
g
Nh
i,j

)}s

j=1
+ g

Nh
i , i = 1, ..., Nh+1, (7)

where gNh
i,j is the neighborhood feature of point pi in the

scope of the scale Nh+1, s is the scale of the neighborhood
features, and φ6 represents the MLP layer. Then, we down-
sample the patch by decreasing the patch size. Moreover, we
integrate the global features of the current scale and the last
scale with the local structures by

f
Nh+1
i = φ7

(
GNh

,GNh−1
, g

Nh+1
i

)
+ f

Nh
i , i = 1, ..., Nh+1, (8)

where φ7 is the MLP layer, and Nh+1 ≤ Nh ≤ Nh−1.

Decoder. Note that the point coordinates are important ba-
sic attributes for point cloud processing and the spatial rela-
tionship between them such as distance can guide the infer-
ence process of the network (Zhao et al. 2021; Zhang et al.
2022). To explore this idea, we introduce two modules in-
cluding Position Feature Fusion (PFF) and Weighted Nor-
mal Prediction (WNP) into the decoder part. As shown in
Fig. 3(d), during the PFF, we embed the neighborhood coor-
dinates of each point and fuse them with the extracted fea-
ture by skip-connections, which can be formulated as

F i = MaxPool
{
ϕ2

(
f i,pi,j − pi, φ8

(
pi,j − pi

))}s

j=1
, (9)

where pi,j is the neighbor coordinate of the point pi, f i is
the extracted feature of pi, s represents the neighborhood
scale, φ8 is the MLP layer and ϕ2 is the skip-connection. As
shown in Fig. 3(e), we predict weights based on the geome-
try information of each point and use the weighted features
to predict the normal vector of the query point:

n = φ11

(
MaxPool {φ10 (F i · softmaxM (φ9 (F i)))}M

i=1

)
, (10)

where φ9, φ10 and φ11 are the MLP layers, and the normal-
ized n is the finally predicted unit normal vector.

Loss function. To bridge the gap between the annotated
normal and the noise-caused neighborhood geometry varia-
tion of the query point, we reformulate the sine loss by CND,
namely, taking the normal np̃ of the nearest neighbor point p̃
in the corresponding noise-free point cloud P̃ as the ground
truth

L1 = ∥np̃ × n̂p∥ . (11)

Meanwhile, we use the transformation regularization loss
and the z-direction transformation loss to constrain the out-
put rotation matrix R ∈ R3×3 of the QSTN (Du et al. 2023)

L2 =
∥∥∥I −RRT

∥∥∥2 , (12)

L3 = ∥np̃R× z∥ , (13)

where I ∈ R3×3 represents the identity matrix, z =
(0, 0, 1). Additionally, to make full use of the spatial rela-
tionships between data points, we adopt the weight loss sim-
ilar to Zhang et al. (2022)

L4 =
1

M

M∑
i=1

(wi − ŵi)
2, (14)

where ŵ are the predicted weights for each data
point, M represents the cardinality of the downsam-
pled patch, wi = exp(− (pi · np̃)

2
/δ2) and δ =

max
(
0.052, 0.3

∑M
i=1 (pi · np̃)

2
/M

)
, where pi is the

point in the downsampled patch. Therefore, our final loss
function is defined as

L = λ1L1 + λ2L2 + λ3L3 + λ4L4, (15)

where λ1 = 0.1, λ2 = 0.1, λ3 = 0.5, and λ4 = 1 are
weighting factors.



Table 2: Quantitative comparisons of CND on the PCPNet
dataset with gradually increased noise.

Method Noise (σ) Ave.0.125% 0.25% 0.5% 0.75% 1.25%
PCA 14.46 15.09 17.75 21.40 31.81 20.10
n-jet 14.40 14.98 17.67 21.50 32.08 20.12
PCPNet 13.42 15.52 18.12 20.02 23.92 18.20
Nesti-Net 13.34 14.33 16.63 18.34 22.31 16.99
DeepFit 11.70 12.83 15.62 17.64 24.01 16.36
AdaFit 11.42 12.95 15.52 17.02 21.74 15.73
GraphFit 11.01 12.40 15.05 16.66 20.56 15.14
HSurf-Net 11.04 12.67 15.33 16.79 20.67 15.30
Du et al. 10.97 12.48 15.17 16.77 21.04 15.29
SHS-Net 10.90 12.66 15.18 16.59 20.89 15.24
Ours 10.60 12.56 14.89 16.31 19.62 14.79

Point Cloud Ours SHS-Net HSurf-Net AdaFit DeepFit

23.75 24.62 24.66 27.77 28.54

0

60

8.71 13.07 12.68 12.17 14.22

Noise: σ = 0.12%

Noise: σ = 0.6%

Figure 5: Comparisons on the PCPNet datasts (Noise: σ =
0.12%, 0.6%). We use the heat map to visualize the CND
error.

5 Experimental Results
Datasets. As predecessor approaches, we first adopt the
synthetic dataset PCPNet (Guerrero et al. 2018) for compar-
ison, in which we follow the same experimental setups in-
cluding train-test split, adding noise, and changing distribu-
tion density on test data. To test the generalization capabil-
ity of our method, we then evaluate and compare the models
trained on the PCPNet on the real-world indoor SceneNN
dataset (Hua, Tran, and Yeung 2018).

Implementation details. We set the input patch size N =
700 and the downsampling factors ρ = {2/3, 2/3, 2/3, 1}.
The scales of k-NN in the LFE are equivalent to 16 and 32,
and s = {32, 32, 16, 16} in the Hierarchical Geometric In-
formation Fusion. The number of the neighbor points during
the PPF is 16. We adopt the AdamW (Loshchilov and Hut-
ter 2017) optimizer with initial learning rate 5 × 10−4 for
training. The learning rate is decayed by a cosine function.
Our model is trained with a 64 batch size on an NVIDIA
A100 GPU in 900 epochs. More implementation details are
reported in Supplementary Materials (SM).

Evaluation. We adopt the proposed CND metric to as-
sess the normal estimation results and compare it with the
RMSE. Moreover, we use the Area Under the Curve (AUC)
metric to analyze the error distribution of the predicted nor-
mals. AUC is attained by the Percentage of Good Points
(PGP) metric, which measures the percentage of normal vec-
tors with errors below different angle thresholds.

Table 3: Statistical CND results on the SceneNN dataset.

Method Ours SHS-Net Du et al. HSurf-Net GrapFit AdaFit DeepFit
Clean 6.92 7.20 6.97 6.73 7.38 7.55 9.46
Noise 10.82 11.30 10.94 11.30 11.38 11.82 12.27
Ave. 8.87 9.25 8.96 9.02 9.38 9.97 10.86

Point Cloud Ours SHS-Net

HSurf-Net AdaFit DeepFit

9.27 9.93

9.84 10.7810.56 0

40

Noise: σ = 0.3%

Figure 6: Qualitative comparisons on the SceneNN datasets
(Noise: σ = 0.3%).

5.1 Results on Synthetic Data
PCPNet. Table 1 reports the statistical results of all com-
pared approaches on the PCPNet dataset, measured in terms
of both RMSE and CND metrics. As observed, our method
achieves the overall highest normal estimation accuracy
across different scenarios, particularly in scenarios with
noise. In comparison to RMSE, the CND metric allows for
more accurate and faithful prediction evaluations while mit-
igating the annotation inconsistency. Additionally, the AUC
results of the CND metric are illustrated in Fig. 4, where our
method still showcases the superior performance, suggest-
ing its remarkable stability across different angular thresh-
olds. Qualitative comparison results are presented in Fig. 5.
Notably, our method exhibits the smallest errors in regions
characterized by noise and intricate geometry.

Robustness to noise. Subsequently, we specifically em-
ploy five representative models from the PCPNet dataset
to assess the robustness against noise. We introduce vary-
ing levels of noise to these data which encompass one CAD
model and four scanned point clouds. The quantitative out-
comes displayed in Table 2 indicate that our method exhibits
superior performance compared to competitors, particularly
in scenarios contaminated by high levels of noise.

5.2 Generalization to Real-world Data
Next, we investigate the generalization capability using the
real-world indoor SceneNN dataset. Results in Table 3 sug-
gest that our method has the highest normal estimation accu-
racy in an average sense. The qualitative results presented in
Fig. 6 exhibit our superiority. It is noticeable that our method
successfully preserves more geometric details, such as the
handle of the refrigerators. Additionally, more results on dif-
ferent real-word datasets can be found in SM.

5.3 Ablation Study
CND-modified loss function. To demonstrate the effec-
tiveness and generalization of the newly introduced CND-
modified loss function, we conduct experiments on the PCP-
Net dataset, comparing the results with and without its in-



Table 4: Network training with or without the CND-
modified loss function on the PCPNet dataset.

Method Ours HSurf-Net DeepFit PCPNet
LCND ✓ ✓ ✓ ✓
No Noise 3.86 3.85 4.24 4.17 6.53 6.51 8.52 9.62
Noise: (σ = 0.12%) 8.13 8.23 8.50 8.52 8.77 8.98 10.40 11.23
Noise: (σ = 0.6%) 12.55 12.76 12.83 13.22 13.66 13.98 15.71 17.28
Noise: (σ = 1.2%) 16.23 16.46 16.47 16.71 18.69 19.00 18.31 20.16
Density: Stripes 4.85 4.65 5.18 4.98 7.95 7.93 9.96 11.15
Density: Gradients 4.45 4.51 4.94 4.86 7.31 7.31 10.25 11.69
Ave. 8.35 8.41 8.69 8.75 10.48 10.62 12.19 13.52

Table 5: Ablation studies with the (a) multi-scale local fea-
ture aggregation; (b) hierarchical architecture; (c) decoder;
(d) QSTN and (e) scale selection and downsampling factor.

Category Noise (σ) Density Ave.None 0.12% 0.6% 1.2% Stripes Gradient

(a)
w/o Local Feature Extration (LFE) 4.05 8.23 12.76 16.45 4.93 4.68 8.52
w/ Single-scale Local Feature Extration 3.98 8.20 12.76 16.40 4.96 4.66 8.50
w/o Attentional Feature Fusion (AFF) 3.96 8.19 12.68 16.39 4.78 4.62 8.44

(b)
w/o Hierarchical Architecture 3.88 8.45 13.80 18.93 4.87 4.50 9.07
w/o Muli-scale Global Feature 3.87 8.27 12.56 16.24 4.94 4.45 8.39
w/o Local Feature 3.98 8.46 12.68 16.21 5.00 4.60 8.49

(c) w/o Position Feature Fusion (PFF) 3.93 8.15 12.62 16.24 4.87 4.68 8.42
w/o Weighted Normal Prediction (WNP) 4.32 8.23 12.56 16.22 5.01 4.89 8.54

(d) w/o QSTN 4.04 8.34 12.67 16.41 4.95 4.74 8.53
w/o Z-direction Transformation Loss 4.02 8.18 12.62 16.32 4.98 4.72 8.47

(e)
N = 600 3.90 8.36 12.59 16.35 4.78 4.46 8.41
N = 800 4.05 8.24 12.52 16.17 4.99 4.65 8.44
ρ = {1/3, 1/3, 1, 1} 3.95 8.25 12.56 16.39 4.76 4.61 8.42
ρ = {1/2, 1/2, 1, 1} 3.93 8.22 12.72 16.29 4.80 4.50 8.41
Ours 3.86 8.13 12.55 16.23 4.85 4.45 8.35

corporation. We employ representative methods, including
the deep surface fitting method DeepFit (Ben-Shabat et al.
2020), as well as the regression methods PCPNet (Guerrero
et al. 2018), Hsurf-Net (Li et al. 2022b), and Ours. Table 4
highlights the impact of the CND component, demonstrating
its significant enhancement in normal estimation accuracy
for both deep surface fitting and regression methods.

Network architecture. CMG-Net comprises three key
components: Multi-scale Local Feature Aggregation, Hier-
archical Geometric Information Fusion, and Decoder. We
delve into the functions of them on the PCPNet dataset.
(1). In the Multi-scale Local Feature Aggregation, we cap-
ture the local structure using two scales and integrate them
by AFF. Table 5(a) reports the results of 1) without LFE; 2)
with single-scale LFE, and 3) integrating multi-scale local
features directly by MLP instead of AFF. As observed, com-
pared with Ours, the multi-scale local features with AFF can
effectively improve the network performance.
(2). To validate the effectiveness of the Hierarchical Geo-
metric Information Fusion, we carry out experiments using
the model with a fixed global scale that is equivalent to the
output scale of CMG-Net. Additionally, we compare the re-
sults of the models without the global feature of the last scale
and the local feature in the hierarchical architecture. Results
shown in Table 5(b) demonstrate that the Hierarchical Geo-
metric Information Fusion operation can also boost the nor-
mal estimation performance.
(3). Table 5(c) shows the ablation studies of the Decoder
part, suggesting the effectiveness of PFF and WNP.
(4). We also investigate the functionality of QSTN, the input
patch sizes N , and the downsampling factors ρ in Table 5(d)
and Table 5(e), where quantitative results validate their use-
fulness in our method.

Ground-truthPoint Cloud Ours

15.35

HSurf-Net

15.44

DeepFit

15.63σ = 0.12%

Figure 7: Comparisons on Poisson surface reconstruction.

5.4 Application of the Proposed Method
We also demonstrate the application of our method on down-
stream tasks. Fig. 7 presents the Poisson surface recon-
struction (Kazhdan, Bolitho, and Hoppe 2006) results us-
ing the normal vectors predicted by competing approaches.
Compared with ground-truth surfaces, our method achieves
the best reconstruction quality (quantified by the Symmet-
ric Mean Hausdorff Distance (SMD)(×10−4)), especially in
shape details of noisy regions, underscoring the higher accu-
racy of our normal estimation. We provide more reconstruc-
tion instances and highlight the application of our newly de-
veloped method to point cloud denoising in the SM.

6 Limitations
While our method has demonstrated remarkable normal es-
timation accuracy across diverse 3D models, especially in
noisy scenarios, it is not yet real-time capable and still de-
pends on annotated training data, as is the case with previous
approaches. Therefore, it is highly desirable in the future to
reduce the computation time and delve into semi-supervised
or unsupervised normal estimation frameworks.

7 Conclusions
We propose a novel method for robust normal estimation in
unorganized point clouds, which shows superiority across
various datasets and scenarios. We identify the issue of di-
rection inconsistency in predecessor approaches and intro-
duce the CND metric to address this concern. This not only
boosts the network training and evaluation, but also greatly
enhances the network robustness against noisy disturbance.
Additionally, we design an innovative architecture that com-
bines multi-scale local and global feature extraction with
hierarchical information fusion to deal with scale selection
ambiguity. Extensive experiments validate that our method
outperforms competitors in terms of both accuracy and ro-
bustness for normal estimation. Moreover, we demonstrate
its ability to generalize in real-world settings and down-
stream application tasks.
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Supplementary Materials
In this exposition, we present more implementation details,
experimental comparisons, and qualitative results to support
our work. Concretely, the following content comprising of
1. implementation details with respect to the local features

in Hierarchical Geometric Information Fusion and the
QSTN structure,

2. explanation of the difference between CND and Mean
Square Angular Error (MSAE)(Lu et al. 2020a),

3. thorough comparisons with the results of normal estima-
tion using denoising pre-processing,

4. more quantitative and qualitative results on real-word
datasets and point clouds contaminated by heavier noise,

5. employment of our method to real-time application and
downstream tasks containing surface reconstruction and
denoising

are reported.

A More Implementation Details
In this section, we provide more implementation details of
our method, especially the local features in Hierarchical Ge-
ometric Information Fusion and the QSTN structure are re-
ported.

A.1 Local Features in Hierarchical Architecture
To capture the local structures of both geometry and seman-
tics in the Hierarchical Geometric Information Fusion mod-
ule, we leverage various local features in the odd and even
hierarchical layers. The local features of the odd hierarchical
layers are defined by

go
i,j = Concat

(
pi,pi − pi,j , φ

(
pi − pi,j

))
, (16)

where pi,j is the neighbor coordinate of the point pi and φ
represents the MLP layer. Concurrently, the even ones put
more focus on semantic feature defined as

ge
i,j = Concat

(
pi,pi − pi,j ,f i − f i,j

)
, (17)

where f i and f i,j are the semantic features of pi and its
neighborhood.

In addition, to validate the effectiveness of our newly pro-
posed feature extraction method, we conduct ablation stud-
ies on the models
1. without local features;
2. with local feature in Eq. 16 only;
3. with local feature in Eq. 17 only.
The results on the PCPNet dataset presented in Table 6
demonstrate that different local features in the odd and
even hierarchical layers can significantly enhance the per-
formance on normal estimation.

A.2 QSTN Structure
Given a point cloud patch P = {pi ∈ R3}Ni=1, the QSTN
part (Qi et al. 2017a; Du et al. 2023) first computes the
quaternion by MLP layers and then translates this quater-
nion into a rotation matrix R ∈ R3×3, as shown in Fig. 8.

Table 6: Ablation studies on the local features in the Hierar-
chical Geometric Information Fusion.

Method Ours (3) (2) (1)
No Noise 3.86 3.91 3.89 3.98

Noise: (σ = 0.12%) 8.13 8.22 8.18 8.46
Noise: (σ = 0.6%) 12.55 12.64 12.56 12.68
Noise: (σ = 1.2%) 16.23 16.28 16.25 16.24

Density: Stripes 4.85 4.95 4.93 5.00
Density: Gradients 4.45 4.62 4.71 4.60

Average 8.35 8.44 8.42 8.49

Local Patch P

Quaternion to
Rotation Matrix

MLP MaxPooling MLP

×

Figure 8: Architecture of QSTN.

B More Normal Estimation Results
In this section, we further explain the difference between
CND and MSAE, a metric used to evaluate the denoising re-
sults of CAD models and compare our method with the nor-
mal estimator with denoising pre-processing (Zhang et al.
2020). Additionally, more qualitative results on the point
clouds contaminated by heavier noise and LiDAR datasets
are provided.

B.1 Differences between CND and MSAE Metrics
As a metric for denoising, MSAE searches nearby ground-
truth points’ normals and picks the minimal normal error.
As shown in Fig. 9, our closest distance-induced CND met-
ric effectively addresses direction inconsistency caused by
noise, distinguishing it from MSAE, which primarily fo-
cuses on normal similarity and selects the neighboring point
with the minimal normal error instead of relative coordi-
nates. As shown in Table 7, we set the neighbor points size in
MSAE to 4 and train the same network by the CND-loss and
MSAE-loss respectively, while our CND-loss consistently
attains superior results on both metrics in the test phase.

B.2 Comparisons with Denoising Pre-Processing
To further prove the effectiveness of our proposed CND-
Modified loss function, we conduct experiments on the mod-
els trained with or without CND-Modification as well as the

CND Annotated Normal

MSAE Annotated Normal

Predicted Normal

Neighbor Clean Points

Euclidean Closest Clean Point

Figure 9: Differences between the CND and MSAE metrics
when wrong normal predictions on noisy edge points occur.



Table 7: Test results of CND and MSAE on the PCPNet
dataset.

Category
MSAE

Noise σ Density
Averge

None 0.125% 0.6% 1.2% Stripes Gradient
L MSAE 4.12 6.69 9.41 12.82 5.45 5.22 7.29

L CND (ours) 2.65 5.34 9.23 12.74 3.29 2.99 6.04

Category
CND

Noise σ Density
Averge

None 0.125% 0.6% 1.2% Stripes Gradient
L MSAE 4.66 10.62 13.37 16.31 5.63 5.48 9.35

L CND (ours) 3.86 8.13 12.55 16.23 4.85 4.45 8.35

Table 8: Results of the comparisons with the denosing pre-
processing on the noisy part of the PCPNet Dataset.

Method ours w/o LCND w/ denoising
Noise: (σ = 0.12%) 8.13 8.23 13.79
Noise: (σ = 0.6%) 12.55 12.76 16.28
Noise: (σ = 1.2%) 16.23 16.46 17.91

Average 12.30 12.48 15.99

model with denoising pre-processing. All of the compared
models have the same architecture. The results in Table 8
indicate that due to the destruction of geometrical informa-
tion and the oversmoothing of shape details, the denoising
pre-processing decreases the accuracy of normal estimation
instead. In contrast, the CND modifies the annotated nor-
mal of the noisy points faithfully, and thus substantially im-
proves the network robustness against noise without the loss
of any shape details.

B.3 Qualitative Results
We present more quantitative and qualitative results on the
real-word outdoor Semantic3D dataset (Hackel et al. 2017)
and the LiDAR WHU-TLS dataset (Dong et al. 2020) in
Fig. 10 and Fig. 11, and point clouds with heavier noise in
Fig. 12 and Fig. 13 to demonstrate the better performance
and generalization of our proposed method.

B.4 Ablation Studies on Real-word Dataset
As reported in Table 9, we have conducted additional ab-
lation studies on the real indoor dataset SceneNN, to fur-
ther demonstrate the generalization of each proposed com-
ponent. The models are trained on the PCPNet dataset and
share the same setting with the ones in Sec 5.3. Results re-
garding each component provide further validation of the

Ours SHS-Net Du et al. HSurf-NetGraphFitInput

Figure 10: Qualitative comparisons on the Semantic3D
dataset, where point normals are mapped to RGB colors.

Table 9: Ablation studies on the realistic dataset SceneNN.

Category Clean Noise Averge

(a)
w/o Local Feature Extration 7.58 11.18 9.38

w/ Single-scale Local Feature Extration 7.14 11.01 9.08
w/o Attentional Feature Fusion (AFF) 7.06 10.86 8.96

(b)
w/o Hierarchical Architecture 7.52 11.25 9.39
w/o Muli-scale Global Feature 6.98 10.95 8.97

w/o Local Feature 6.96 11.21 9.08

(c)
w/o Position Feature Fusion (PFF) 7.09 10.86 8.97

w/o Weighted Normal Prediction (WNP) 7.06 11.09 9.07

(d)
w/o QSTN 7.10 11.10 9.10

w/o Z-direction Transformation Loss 7.08 11.06 9.07
(e) w/o CND 6.94 10.96 8.95

ours 6.92 10.82 8.87

Table 10: Timings on realistic indoor dataset SceneNN with
10K points per scene.

Data (10K) No.032 No.207 No.032-Noise No.207-Noise Ave.
Time (s) 4.8 3.69 3.8 3.76 4.01

technical soundness of our method, suggesting its effective-
ness and robustness.

C More Applications
In this section, we provide more results of employing our
method to downstream tasks. Both quantitative and qualita-
tive results demonstrate that our method outperforms com-
petitors, in both surface reconstruction (Kazhdan, Bolitho,
and Hoppe 2006) and denoising (Lu et al. 2020b) tasks.

C.1 Real-time Application
Timings reported in Table 10 show our acceptable efficiency,
which indicate that our method is not yet real-time capable,
as stated in Sec. 6.

C.2 Surface Reconstruction
In Fig. 14, we show more mesh models reconstructed using
normals predicted by different methods and the correspond-
ing SMD (×10−4) of reconstructed surfaces. As observed,
our method consistently generates accurate reconstruction
surfaces on the PCPNet dataset.

C.3 Denoising
In Fig. 15, we present the denoising results of the instances
in the PCPNet dataset using normals estimated by compet-
ing approaches, along with the CD (×10−6) and their corre-
sponding reconstructed surfaces. Our method also achieves
the best denosing results.
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Figure 11: Qualitative results on the WHU-TLS dataset.
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Figure 12: Comparisons on the point clouds with heavy noise (σ = 0.6%) in the PCPNet dataset. We use the heat map to
visualize the CND error. Our method achieves the highest accuracy on all models.
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Figure 13: Comparisons on the point clouds significantly affected by heavy noise (σ = 1.2%) in the PCPNet dataset. We use
the heat map to visualize the CND error. Our method consistently achieves the highest accuracy across all models.
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Figure 14: Comparisons on the reconstruction results. Our method achieves the best reconstruction quality.
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Figure 15: Comparisons on the denoising results. The first row shows the denoised point clouds while the second row shows
the corresponding reconstructed suraces. Our method achieves the best denoising results along with high-quality reconstruction
surfaces.


