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ABSTRACT
Recent multi-layer perceptron(MLP)-based implicit representations

have achieved remarkable successes in hand modeling. Compared

with previous explicit mesh-based representation methods, implicit

methods are more compact shape representations. However, it is ex-

pensive to obtain explicit geometry surfaces from implicit functions

with Marching Cubes, which limits the real-time performance in

surface reconstruction applications with an implicit hand represen-

tation. To explore a more effective and efficient hand representation,

we present a skeleton-driven method to represent a human hand

with a point cloud. To achieve this goal, we propose a Tri-Axis Mod-

eling method to modeling the motion pattern of the xyz coordinate
of a patch of point cloud, and an Order Encoding strategy to con-

struct a parameter-sharing and geometry-disentangled network.

These two effective strategy make our method run in real-time

and has super-high fidelity close to implicit methods. Qualitative

and quantitative experiments on public datasets demonstrate the

efficiency, effectiveness, and robustness of our method against state-

of-the-art approaches. Our code would be soon released once our

paper is accepted.
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1 INTRODUCTION
Humans interact with the physical world mainly with their hands

and bodies in daily life. Thus, in applications like virtual reality (VR)

and augmented reality (AR) which aim to create a realistic digital

world, the quality of the reconstructed hand is quite important to

improve the user’s immersive experience. In this work, we aim to

propose an effective and efficient hand representation to satisfy the

need of AR applications.

In all, existing hand representations can be roughly divided into

three categories: skeleton representations [55, 21, 1, 12], mesh-

based representations [5, 32, 8, 24], and implicit representations [17,

9]. Different hand representations have their own advantages in

various applications. Hand skeleton representation is a set of 3D

Euclidean points and a kinematic tree. While it lacks surface infor-

mation, it meets the need of the hand gesture recognition task [14,

10]. The mesh-based representation consists of Euclidean vertices

and triangular faces and can directly interact with a virtual object

since it offers surface information. However, compared with 3D

keypoint coordinates, the pose and shape parameters of the most-

used hand mesh representation—MANO [42] are more difficult for a

neural network to learn. This observation is consistent with the pre-

vious finding [58], where they demonstrate that the discontinuity

of axis-angle affects the performance of pose estimation.

On the other hand, implicit representation has obtained increas-

ing attention in human body [11, 35], hand [17, 9, 18] and heads [3,

https://doi.org/10.1145/3652583.3658012
https://doi.org/10.1145/3652583.3658012
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Figure 1: (a) display the order defined in hand kinematic tree.
Red point is the wrist point. (b) illustrates of the pose-aligned
mesh decomposition.

52, 56] modeling, due to its impressive capability in continuously

modeling 3D shapes. While implicit representation methods cannot

be easily employed in real-time application scenarios like AR, due

to the huge computation demand of rendering explicit surfaces

from implicit function networks. Concretely, the discrete 3D vol-

ume data, R𝑁×𝑁×𝑁
, is indispensable when using the Marching

Cubes technique [27] to obtain explicit surfaces from implicit func-

tions. However, for gaining the volume data, the neural implicit

function would have to forward-propagate 𝑁 3
times, which means

the compute cost is several orders of magnitude greater than the

implicit network.

In the AR industry, the real-time interaction of virtual objects

with hands plays a key role. The trustworthy interaction relies on an

accurate perception of the spatial location of hands. This means the

primary attribute of the hand representation in AR is representing

the spatial location of a hand surface. This observation inspires

us to introduce point clouds into hand representation methods

since it is a natural and the simplest shape representation. On the

other hand, previous studies have demonstrated that the point

cloud representation supports real-time collision detection [44, 20,

36], and collision detection is substantial enough to make virtual

intervention plausible. Hence, the point cloud representation can

support the realistic experience in scenarios of real-time interaction

with virtual objects.

Technically, following [29, 11, 17, 9], we segment the non-convex

hand surface into 20 convex components, as shown in Fig. 1(b), and

regress each local point cloud respectively. Each local surface corre-

sponds to a bone in the hand kinematic tree and has an assigned or-

der defined in Fig. 1(a). Our model parameterizes the hand surface’s

point cloud by a 3D hand skeleton in this geometry-disentangled

way. Furthermore, for each local point cloud, we propose a Tri-Axis

Modeling strategy to efficient represent local point cloud surface.

This strategy allow us to precisely modeling local surface with only

several layers MLP network. Experimental results demonstrate that

our method has real-time inference speed and high accuracy which

is comparable with implicit methods.

The main contributions are summarized as follows:

• We propose a novel neural hand model that parameterizes

an explicit hand surface by the 3D coordinate space of a

skeleton, and it is disentangled and parameter-sharing by

our distinctive design, like global spatial descriptor (GSD)
and Tri-Axis Modeling strategy.

• We are the first to involve a point cloud to represent the hand

surface in the hand modeling task, and experiment results

manifest that our method’s accuracy is close to the implicit

method while our inference speed outdistances it.

• We systematically research existing pose representations and

discover that the coordinate-based representation of hand

skeleton is more suitable for a neural network to process.

2 RELATEDWORK
2.1 Auto-Decoder-Based Shape Learning
As an encoder-free framework, Auto-Decoder (AD) was first pro-

posed by Tan et.al. [47], which simultaneously optimizes the latent

vectors assigned to each data point and the decoder weight through

back-propagation. Recently, AD has been involved in solving the

3D vision problems [37, 28, 7]. These methods approximate the

Signed Distance Function [2, 51, 33, 23] or Occupancy Function [17,

11, 30, 29] of objects using AD. Their network architectures can be

summarized in one general paradigm as shown at the beginning of

Fig. 3. Hand and body modeling problems [17, 11] can be seen as a

decoding process from a pose to a surface. They treat a hand or hu-

man pose as a decodable space in the implicit neural representation,

and successfully model an articulated hand and body from a pose.

Inspired by these, we introduce two kinds of decodable vectors:

bones’ order encoding for parameter-sharing and bones’ position

encoding for bone-wise reconstruction.

2.2 Implicit Human Representation
Neural implicit fields [37, 28, 7, 31, 54, 49, 17, 11, 9, 6, 48, 38, 4] have

been widely researched in the 3D vision and graphics community:

LISA [9] learns an implicit hand shape function and a color field

from multi-view RGB video sequences; NASA [11] learns a neural

occupancy field of the human body using model parameters of

SMPL [26]; HALO [17] learns a hand occupancy function from the

3D hand skeleton; AlignSDF [6] proposes to jointly learn SDFs for

hands and objects, with the leverage of priors provided by paramet-

ric mesh representations; Pose-NDF [48] advocates to model the

unsigned distance to the manifolds of plausible human body poses

in the pose space from non-Euclidean space of 𝑆𝑂 (3)𝐾 .Although
these implicit methods display amazing visual performance on

fidelity, none of them achieve real-time performance due to the

defect mentioned above. In our work, we bridge the framework

of the implicit field and point cloud representation through three

MLP-based Coordinate-Project Networks (CPNet). While the net-

work architecture is simple, wide-ranging experiments validate the

effectiveness and efficiency of this design.

2.3 Disentangled Representation
Disentangling parameters of certain properties, e.g., the pose, shape,
and color, allows the neural network to treat these properties inde-

pendently. In 2D image synthesis, [22, 41, 34, 60, 45] have shown that

disentangled representations are essential for learning a meaningful
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Figure 2: The overview of our method which is a simple but effective pure-MLP architecture. Firstly, a hand skeleton is separated
into 20 bone vectors, {B𝑖 }, and they will be encoded through concatenating with {b𝑖 } and position encoding. Secondly, the
encoded bone vectors will be concatenated with Global Spatial Descriptor, g, as final inputs. Finally, these final inputs will be
fed to the local point clouds regression network to generate 20 point cloud patches, where the local point cloud regression
network consists of 3 parallel CPNets.

latent space. In the 3D community, disentanglement methods [25,

50, 56, 35, 33, 9, 29, 16] also have been receiving growing attention.

NeuMesh [50] encodes the neural implicit field with disentangled

geometry and texture codes on mesh vertices, which allows the net-

work to perform mesh-guided geometry editing, as well as texture

editing. A-SDF [33] factorizes shape embeddings and joint angles

to model the articulated objects. LISA [9] proposes a generative

hand representation with disentangled shape, pose, and appearance

parameters, respectively. These methods are similar in one aspect,

in that they train different networks to deal with different proper-

ties. Inspired by COAP [29] which encodes local point clouds with

one-hot encoding to learn the occupancy function of the body, we

involve the bones’ order coding to encode different parts, making

our network become parameter-sharing.

3 METHODOLOGY
In this work, we propose a novel point cloud representation of

a hand. Our key insight comes from the success of the implicit

representations which have validated the 3D representation capa-

bility of an MLP. Inspired by this, we propose a coordinate-wise

generation strategy that regresses the 𝑥𝑦𝑧 coordinates of the point

cloud respectively by three CPNet which is also a full MLP design

like implicit methods. We adopt a Divide-and-Conquer rule to

reconstruct the non-convex surface of hands from skeletons as we

explained in Sec. 1. Fig. 2 depicts the overall framework of our

method: 1) order encoding encodes each bone vector to achieve

parameter-sharing; 2) The GSD module offers supplemental spatial

information, g, to alleviate the local ambiguity problem; 3) encoded

bone vectors and the g are concatenated and fed to the point cloud

regression module to produce hand point clouds. Our experiments

validate this simple but effective framework.

3.1 Order Encoding
Our neural parametric model can be described as a mapping from

a root-relative hand pose space P to a space of point clouds on the

hand surface. {B𝑖 } ⊂ R6 and {b𝑖 } ⊂ {0, 1}20 are respectively bone

vectors and one-hot code of bones’ order defined in Fig. 1(a). {B𝑖 }
are defined as follows:

P :=
{
J𝑖 − J𝑤𝑟𝑖𝑠𝑡 | J𝑖 ∈ R3, 𝑖 = 1, 2, · · · , 21

}
, (1)

{B𝑖 } :=
{
(J0𝑖 , J

1

𝑖 ) | J
0

𝑖 , J
1

𝑖 ∈ P; 𝑖 = 1, 2, · · · , 20
}
, (2)

where J𝑤𝑟𝑖𝑠𝑡 ∈ P is the absolute 3D coordinates of the wrist shown

as the red point in Fig. 1(a), P is the set of root-relative key-points

of the skeleton, J0
𝑖
is the father node of J1

𝑖
in a hand kinematic tree

shown in Fig. 1(a). In the order encoding phase, the bone vectors will

be concatenated with {b𝑖 }, which helps the network recognize each
bone vector of hands and hence achieves geometry-disentangled

property.

3.2 Positional Encoding
In practice, we find that having the network directly operate on P
input coordinates results in poor performance. This is consistent

with a recent discovery [39] that deep networks are biased towards

learning lower frequency functions. In [31], Mildenhall et.al. resolve
this problem via the Positional Encoding technique, 𝜅 (·), which
maps from 𝑅 into a higher dimensional space R2𝐿 . We also incorpo-

rate 𝜅 (·) into our model, which maps input to a higher dimensional

space before passing it to the network. The formulation of 𝜅 (·) is
follow:

𝜅 (𝑥) =(sin(20𝜋𝑥), cos(20𝜋𝑥), · · · , sin(2𝐿−1𝜋𝑥),

cos(2𝐿−1𝜋𝑥)),
(3)

where 𝑥 ∈ [−1, 1], and the P will be scaled into an appropriate

region to satisfy Eq. (3). We demonstrate the usefulness of positional

encoding in our ablation study.
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Figure 3: An illustration of the implicit paradigm, baselines (Model (U) and (T)), and our model (Model (C)). The implicit
paradigm usually has a single MLP and outputs a single value. Our explicit paradigm has three parallel CPNets and outputs
explicit geometry representation — Point Clouds.

3.3 Global Spatial Descriptor g
One basic problem in the distributed generation strategy is the

uniqueness of the local pose of each bone’s representation. In non-

palm bones, two vertices and a root keypoint commonly define a

plane that simultaneously defines one local coordinate system as

depicted in Fig. 4.

The 6D pose of a bone can be confirmed by them. However, in

the case of palm bones, no additional information can determine

the local system, and this results in the network preferring to learn

the mean shape of palm samples. We call this phenomenon the

problem of local ambiguity in distributed generation and demon-

strate it in Table 2. To address this problem, we introduce the Global

Spatial Descriptor 𝑔, which takes P as input and outputs additional

information to anchor the palm bones. The formulation of g is:

g = G𝜂 (P), (4)

A B

C

D

Rx

y

z

World Coordinate System

x

y

z
Local Coordinate System 

of purple rigid

Figure 4: An illustration of the local ambiguity problem in
the palm. The 6D pose of the purple rigid body can be com-
puted by the pre-defined world coordinate system and local
coordinate system. In the local system of the purple part, we
set vector AB as the x-axis, the cross-product between vectors
AR and AB as the y-axis, and the z-axis as the cross-product
of the x-axis and y-axis.

where 𝜂 is the learnable parameter of network G𝜂 (·) .

3.4 Point Clouds Regression
For regressing the surface point cloud from each bone, we propose

a Tri-Axis modeling strategy using three parallel CPNets to respec-

tively predict the coordinate: 𝑥,𝑦, 𝑧 of 𝑁 points and concatenate

them as the final output. For every local point cloud, we have:

𝐹𝜔 (𝜅 (B𝑖 , b𝑖 ), g) = 𝑓 1𝜔1

(𝜅 (B𝑖 , b𝑖 ), g) ⊕ 𝑓 2𝜔2

(𝜅 (B𝑖 , b𝑖 ), g)
⊕ 𝑓 3𝜔3

(𝜅 (B𝑖 , b𝑖 ), g)
= v𝑥 ⊕ v𝑦 ⊕ v𝑧

=

𝑁⋃
𝑖=1

v𝑖

(5)

where ⊕ denotes the concatenation, 𝑓 𝑖𝜔 and 𝜔𝑖 , 𝑖 = 1, 2, 3 represent

three CPNets and their network parameters, b𝑖 is one-hot coding
to encode the order assigned in Fig. 1(a), the g is the Global Spatial

Descriptor, {v𝑥 , v𝑦, v𝑧 } ∈ R𝑁 are respectively the 𝑥,𝑦, 𝑧 coordinate

vector of the local point cloud with the size of 𝑁 , v𝑖 ∈ R3 is the
i-th point in local point cloud, 𝜅 (·) is applied separately to each

of the real values in B𝑖 and b𝑖 , and 𝐹𝜔 (·) is the local point cloud
regression network.

The specific architecture of CPNet consists of a 17-layer Fully-

Connected neural network with three empirical shortcut connec-

tions [15] which is shown in Fig. 2. Each CPNet takes bones’ spa-

tial information and g as input and outputs one coordinate of the

corresponding point cloud. The bone-corresponding information

consists of one-hot encoding, b𝑖 , which achieves parameter-sharing,

and bone’s spatial representation. We discuss the effects of different

hand pose representations by our baselines.

3.5 Baselines and our Model
Existing pose representations are the axis-angle representation in

MANO, transformation matrix in [17, 30, 11, 29], and 3D keypoint

coordinates. Previous work [58] finds the defect when taking the

axis-angle representation as output in the regression task, and we

find a similar defect when taking it as input. For demonstration,

we construct two baselines from two different pose representations

and compare their performances with our model: 1) Unstructured
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Model (U) takes as input MANO-type axis-angle representation

of pose and shape parameter; 2) Transformation-based Model (T)

takes as input the axis-angle of the rotation matrix and translation

vector. These two models are shown in the middle of Fig. 3. In our

proposal, we advocate parameterizing the hand surface into 3D

keypoint coordinates to avoid the representation issues of the 3D

rotation parameters. Consequently, we refer to our approach as a

coordinate-based Model (C).

UnstructuredModel (U). Similar to NASA [11], Model (U) does

not explicitly encode the knowledge of an articulated hand. Its input

consists of shape parameter 𝜷 and pose parameter 𝜽 in MANO [42],

where 𝜽 ∈ R3×15+3 is composed of the axis-angle representation

of 15 non-palm hand bones’ relative rotation with respect to its

parent in the kinematic tree and the global rotation. And Model (U)

outputs a global point cloud of the hand. It is formulated as:

F𝜔 (𝜽 , 𝜷) = 𝐹𝜔 (𝜽 , 𝜷) =
𝑁⋃
𝑖=1

v𝑖 , (6)

where 𝜔 is the network parameters, 𝑁 is the size of generated

points in our experiments, v𝑖 represents the i-th point in the final

point cloud and 𝐹𝜔 (·) is similar to Eq. 5, which also consist of

three CPNets, but has difference in input. Note there is no g in

Eq. 6 because the 𝜽 already contains a series of rotations which

transform the resting skeleton to the target skeleton and Model (U)

does not take the distributed generation strategy.

Transformation-basedModel (T) explicitly utilizes the knowl-
edge of an articulated hand, which decomposes the highly non-

convex hand into a set of convex components as shown in Fig.

1(b) and generates each part individually. [17, 9, 11] have already

demonstrated that the transformation matrices for each bone can

well encode the local geometry information. To provide pose in-

formation in our distributed generation network, we compute the

axis-angle, r𝑖 , of the rotation from each bone 𝐵𝑖 in the current

pose P to the corresponding bone B∗
𝑖
in a standard pose P∗

and

the translation vector t𝑖 . Although this representation is different

from previous works [17, 9, 11], the performance in the experi-

ment demonstrates its feasibility. Specifically, Model (T) can be

formulated as:

F𝜔 (P) =
20⋃
𝑖=1

𝐹𝜔 (𝜅 (r𝑖 , t𝑖 , b𝑖 ), g) =
20⋃
𝑖=1

𝑁⋃
𝑗=1

v𝑖 𝑗 , (7)

where 𝑁 is an adjustable number of generated points in our experi-

ments,𝜔 is the network parameter, g is the Global Spatial Descriptor,
v𝑖 𝑗 is the j-th point of the i-th point cloud, {b𝑖 } are one-hot coding
to encode the order assigned in Fig. 1(a) and 𝐹𝜔 (·) is similar to Eq. 5,

which also consist of three CPNets, but has a difference in input.

Coordinate-based Model (C) does not take the rotational rep-
resentation as input, but directly takes two endpoints’ coordinates

of each bone, {B𝑖 }, as input. Hence, Model (C) is formulated as:

F𝜔 (P) =
20⋃
𝑖=1

𝐹𝜔 (𝜅 (B𝑖 , b𝑖 ), g) =
20⋃
𝑖=1

𝑁⋃
𝑗=1

v𝑖 𝑗 , (8)

where 𝑁 is an adjustable number of generated points in our exper-

iments, g is the Global Spatial Descriptor, v𝑖 𝑗 is the j-th point of

the i-th point cloud, 𝜔 is the parameter of our network and 𝐹𝜔 (·)
follows to Eq. 5. A comprehensive comparison of Model (C) with

these two baselines enables us to identify the most suitable pose

representation for neural network learning.

3.6 Loss Functions
Our model is trained to produce the point clouds of each bone with

the corresponding ground truth as supervision. For training objec-

tives, we think about three loss items: Chamfer distance (CD) [13],

Earth Mover’s distance [43] (EMD), and surface constraint.

Chamfer Distance. CD measures the distance between two

point clouds by summing the squared distances of the nearest

neighbor correspondences. Given two point sets: 𝑆1, 𝑆2 ⊆ R3, which
denote predicted points and ground truth, respectively. The formu-

lation of Chamfer Distance can be described as:

𝑑𝐶𝐷 (𝑆1, 𝑆2) =
1

|𝑆1 |
∑︁
x∈𝑆1

min

y∈𝑆2
| |x − y| |2

2
+

1

|𝑆2 |
∑︁
y∈𝑆2

min

x∈𝑆1
| |y − x| |2

2
.

(9)

Strictly speaking, 𝑑𝐶𝐷 is not a distance function, because the tri-

angle inequality does not hold. However, CD produces reasonable

and high-quality results in practice.

Earth Mover’s Distance. Different from the Chamfer distance,

Earth Mover’s distance requires two sets of points of the same size.

The formulation of Earth Mover’s distance can be described as:

𝑑𝐸𝑀𝐷 (𝑆1, 𝑆2) = min

𝜃 :𝑆1→𝑆2

1

𝑁

∑︁
𝑥∈𝑆1

| |x − 𝜃 (x) | |2
2
, (10)

where 𝜃 : 𝑆1 → 𝑆2 is a bijection, and 𝑆1, 𝑆2: |𝑆1 | = |𝑆2 | = 𝑁 .

Please note that EMD requires equal size for two point sets. In

most cases, we do not take it as the loss item unless the number of

sampled points is equal to the number of our generating points.

Surface constraint. In this work, we apply a surface constraint

[40] to speed up the convergence of the training process. It is for-

mulated as follows:

L𝑠𝑢𝑟 𝑓 =
1

20 · 𝑁

20∑︁
𝑖=1

𝑁∑︁
𝑗=1

min

c𝑘 ∈M
𝑑 (x𝑖 𝑗 , c𝑘 ), (11)

where x𝑖 𝑗 means the predicted j-th point of the i-th bone, c𝑘 is

a triangular patch of the ground-truth mesh M, and 𝑑 (x𝑖 𝑗 , c𝑘 ) =
miny∈c𝑘 𝑑 (x𝑖 𝑗 , y) where 𝑑 (·) means the L2 distance.

To this end, the final loss function is:

L = 𝑑𝐶𝐷 + 𝜆 · L𝑠𝑢𝑟 𝑓 , (12)

where 𝜆 is the balance weight and we set it as 10 in our experiments.

When satisfying the number requirement for𝑑𝐸𝑀𝐷 , we replace𝑑𝐶𝐷
with 𝑑𝐸𝑀𝐷 in Eq. (12).

4 DATASETS
Complement Dataset [5] is a synthetic dataset to resolve long-
tailed distributions in popular benchmarks. In this dataset, each

finger has two states: total bending and extending. This dataset

contains 32 base poses according to the combination of five-finger

states. For 496 pairs of base pose pairs, [5] produced three new

poses through uniformly interpolating between poses in Maya soft-

ware. All these 1,520 poses are the same kind of uniform samples
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in the pose space without wrist rotations. To sample wrist rota-

tion, [5] uniformly placed 216 cameras arranged in a hemisphere.

The entire dataset contains 328,320 samples and all hands are the

same in identity. To further study an optimal pose representation,

we experiment with our model and other baselines on a small train-

ing dataset. In this experiment, our training set only contains 32

base poses (32 × 216 meshes) and our test set consists of 1,520

interpolated poses (1520 × 216 meshes).

FreiHAND [61] contains 130,240 training images and 32,560

training meshes from 32 subjects of different genders and ethnic

backgrounds and we only use mesh data in our experiment. We

demonstrate the high fidelity of our method and the ability to

represent different hand shapes.

Data Preparation. We use ground-truth point clouds to su-

pervise the training stage with the reason that the uniformity of

generated point clouds cannot be guaranteed if we only use meshes

for supervision. To satisfy the requirement of distributed recon-

struction, we segment each mesh according to the corresponding

pose, then we implement Poisson disk sampling [53] to obtain bone-

corresponding point clouds to achieve distributed supervision. The

disintegration way is shown in Fig. 1.

5 EXPERIMENTS
5.1 Implementation Details
We use the Adam optimizer [19] to train the network with a mini-

batch size of 256.Models in experiments on the Complement Dataset

are trained for 4,000 epochs and models in experiments on Frei-

HAND are trained for 800 epochs. The initial learning rate is 5×10−4,
multiplied by 0.5 for every 300 epochs on FreiHAND, and for every

800 epochs on the Complement dataset. In our experiments, every

generated point cloud of bones has 100 points, and the supervised

point cloud of bones has 500 points. When using EMD as a loss

item, the point clouds of bones for supervised learning are 100

points to match the number of generated points. Unless otherwise

specified, the number of neurons of hidden layers in CPNet and

GSD is set to 256. For positional encoding, we set 𝐿 = 2 for bones’

one-hot encoding on Model (C) and Model (T) and 𝐿 = 5 for all

non-bones’ order elements. We set 𝑁 = 100 on Model (T) and (C)

and set 𝑁 = 2000 on Model (U) for a fair comparison.

5.2 Evaluation Criterions
We evaluate the quality of the generated point cloud from two

aspects: accuracy and uniformity.
MP2Smeasures themean per point position errorwith Euclidean

distance (in millimeters) between the estimated point cloud and

the ground-truth mesh. This metric evaluates the accuracy of the

estimated point cloud and its calculation method follows Eq. (11).

We report the mean of each part’s CD, MCD, as a uniformity

metric (in 𝑚𝑚2
). Furthermore, we report MEMD (in 𝑚𝑚2

) and

MHD (in𝑚𝑚) for comprehensive measuring the uniformity, where

the CD and EMD respectively follow Eq. (9) and Eq. (10). HD means

the Hausdorff Distance and is formulated as:

𝑑𝐻𝐷 (𝑆1, 𝑆2) = max{ sup
x∈𝑆1

inf

y∈𝑆2
𝑑 (x, y), sup

y∈𝑆2
inf

x∈𝑆1
𝑑 (x, y)}, (13)

Table 1: Quantitative results on FreiHANDdataset. † indicates
the model without GSD module. ‡ indicates the reproduced
Pose2Mesh method.

Method MP2S↓ MCD↓ MEMD↓ MHD↓

MobRecon [5] 5.53 361.44 166.35 16.74

MeshGraphormer [24] 5.18 247.51 125.77 15.29

Model (C)+N(0,50) 4.49 200.25 129.21 19.26

Model (C)+N(0,20) 3.12 81.37 56.41 13.11

Pose2Mesh
‡
[8] 2.32 12.75 7.88 5.89

HALO [17] 0.39 5.11 − 5.43

Model(T)
†

1.85 35.68 59.97 9.54

Model(C)
†

1.79 41.84 57.33 9.63

Model(U) 1.80 49.23 − 17.70

Model(T) 0.60 6.07 6.38 4.47

Model(C) 0.45 5.36 5.96 4.08
Best; Second best.

where 𝑑 (·) is L2 distance, 𝑆1 and 𝑆2 are two point sets. HD can well

measure the noise of prediction, because it is sensitive to outliers.

Infer time indicates the inference time of the model, and the

unit is a millisecond.

Mult-Adds counts multiply-add operations.

5.3 Model Evaluation
5.3.1 Quantitative Evaluation. On the FreiHAND dataset, we re-

port the performance of our model when training on rich data,

and compare it with contemporary methods, as shown in Table 1.

Pose2Mesh [8] reconstructs the hand surface from 2D pose to 3D

pose and then to the final MANO-style mesh. For a fair comparison,

we reproduce their method which reconstructs mesh directly from

the 3D pose. In addition, we compare our model with MobRecon [5]

and MeshGraphomer [24] which are the state-of-the-art monocular

hand reconstruction methods, and we introduce 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 to

input for fairness. For these mesh reconstruction methods, we first

obtain the root-aligned mesh predictions, and then we segment

meshes following the way in Fig. 1 and finally implement Possion

disk sampling [53] to obtain point clouds for each part. All metrics

are computed in this way. HALO [17] is an implicit method, we

report its P2S as the accuracy reference. For the metric of MCD and

MHD of HALO, the number of vertices of the mesh obtained by

Marching Cubes [27] is usually greater than 80k. For fairness, we

downsample the size of vertices to ∼2k points through [53], then

compute the MCD and MHD. The MEMD of HALO and Model (U)

cannot be computed as the EMD needs two point clouds of have

same size which HALO and Model (U) are both not satisfied in local

areas.

In Table 1, Model (C) achieves state-of-the-art accuracy in the

explicit representation and has compelling performance compared

with the implicit representation. From the metric results of three

baselines, we can conclude that: Similar to NASA [11], the struc-

tured model (T) and (C) which learn the articulated hand model

via decomposition have striking advantages compared with the

unstructured model (U), as quantified by the fact that the MP2S
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Table 2: Statistics of CD of palm bones on FreiHAND test set.
† indicates that the model does not have the GSD module.

Method 1st 2nd 3rd 4th 5th

Model(C)
†

174.22 107.34 144.90 133.51 130.49

Model(T)
†

161.24 95.89 110.31 101.93 98.85

Model (T) 9.84 10.28 7.76 6.97 16.05

Model (C) 9.76 9.56 7.03 6.48 14.69

Table 3: Quantitative results on Complement dataset.

Method MP2S↓ MCD↓ MHD↓
Model(T)+HALO [17] 6.10 361.16 23.35

Model(T)+6D [58] 4.38 187.16 17.17

Model(T) 3.69 122.57 14.84

Model(C) 1.60 29.31 9.64

Table 4: Statistics of inference cost about different methods
on the FreiHAND test set.

Method Infer time↓ Forward Times↓ Total Mult-Adds (M)↓ MP2S↓
HALO [17] 4283.47 65

3
65910 0.39

Pose2Mesh
‡
[8] 18.94 1 579.34 2.32

Model (C) 5.64 20 76.05 0.45

of (T) and (C) are respectively lower by 67% and 75% than the (U);

Compared with the axis-angle representation of the pose, the co-

ordinates of the pose is more suitable for the neural network to

learn; our GSD module significantly improves the quality of gen-

erated point clouds. Indeed, the advantages of Model (C) are more

remarkable when the training data is deficient as shown in Table 3.

Analysis of GSD module. As discussed in [17, 46], the local

coordinate system can be defined by one bone and its father in the

kinematic tree. Similarly, the 6D pose of 𝑖-th non-palm bone can be

obtained by B𝑖 and the wrist point. Without loss of generality, we

explain this on an articulated object which has the same structure

as a human hand. As depicted in Fig. 4, the purple rigid part corre-

sponds to a non-palm bone, and its local coordinates system can be

computed by the purple dotted line, because these two lines are not

collinear. The orange and blue parts’ local coordinate systems can

also be obtained in this way. However, no other fixed points can

help to determine the local coordinate system of the light green

part. This is what we call the local ambiguity problem in distributed

generation. To address this problem, we introduce a GSD module to

provide additional spatial information. In Table 2, we quantitatively

report CD of palm bones to better demonstrate the effect of the

GSD module, and the order of 𝑖-th follows the defined order of the

bones in Fig. 1(a). Note that similar improvement also occurs in

Model (T), because {r𝑖 , t𝑖 } contain information that is equivalent

to {B𝑖 }.
On the Complement dataset [5], all test poses are obtained

by interpolation of training poses in our data split. In this exper-

iment, we demonstrate that the coordinate-based pose has better

generalization ability than the axis-angle-based method. For a com-

prehensive comparison, we conduct modifications on Model (T)

to additionally compare our coordinate representation with other

pose representations. We report the experimental results in Ta-

ble 3 where “+6D” means that we replace axis-angles in Model

(T), {r𝑖 }, to a continuous 6D rotation representation proposed by

Zhou et.al. [58], and “+HALO” means we set the transformation

matrices proposed in HALO [17] as input. It turns out that the

coordinate-based method is better than all rotation-based methods.

And this experiment also proclaims that our MLP-based point cloud

representation has excellent interpolation ability like the implicit

method, and draws a conclusion that in hand modeling, the coor-

dinate representation of pose is better than the usual axis-angle

representation.

Inference time. In industry, the Multi-Adds is closely related to

the inference time of the neural network. The Multi-Adds of Model

(C) is only 3.84M for per bone’s inference and is 76.05M for the

whole hand. On an NVIDIA TESLA V100 GPU, the inference from

a hand pose to a whole point cloud requires just 5.64 milliseconds.

In Table 4, we compare the cost for obtaining the explicit output

from three hand representation methods, where
‡
indicates the

reproduced Pose2Mesh method and Forward Times is the number

of forward inferences required for each model to obtain the explicit

surface. All tests are conducted on one NVIDIA TESLA V100 GPU.

As we mentioned before, the implicit method (HALO) requires

forward many times to obtain volume data for Marching Cubes [27],

and this makes its final multiply-add operations overwhelm other

explicit methods. Our point cloud representation has less compute

cost and better accuracy than the Pose2Mesh[8].

5.3.2 Qualitative Evaluation. In this section, we mainly present the

geometry accuracy of three different learning-based representations

in Fig. 5. As displayed in Fig. 5, our method can reconstruct precisely

explicit geometry and outperforms the mesh-based method [8]. In

some cases, our method even outperforms the implicit model [17]

while the MP2S of HALO is less than the MP2S of Model (C). It is

reasonable to consider Model (C) since its standard deviation of

P2S and the mean of max P2S of HALO are (0.425𝑚𝑚, 3.57𝑚𝑚) and
(0.413𝑚𝑚, 3.26𝑚𝑚), respectively. This means that the geometry

reconstruction quality of our Model (C) is better. Besides, Model

(C) also has better MHD than HALO, which also indicates that our

shape predictions are stabler.

5.4 Application
Mapping Skeleton to Surface. Effectively and efficiently mapping

the hand skeleton to the surface for downstream tasks, for example

collision detection, has great application value. And our method can

directly achieve this goal effectively. To demonstrate the advantage

of our method, we compare our model with an iterative-optimation-

based IK solver
1
and a neural-network-based IK solver, IKNet [59],

in Table 5. To discuss the influence of large global rotations, we

report the experiment results of the iterative baseline with and

without the consideration of global rotations. Experiments show

the iterative IK method has better performance when the estimated

skeleton is similar to the rest pose (like no global rotation). However,

our method overwhelms the iterative method and also defeats IKNet

which directly regresses the MANO parameters from a 3D skeleton.

1
https://github.com/CalciferZh/Minimal-IK
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Pose2MeshHALO Model (C) Ground Truth

Figure 5: The visual comparison of different methods on Frei-
HAND test set. For every instance, we display two different
views. For HALO, we downsample its vertices from ∼ 80𝑘 to
∼ 2𝑘 using [57].

This demonstrates the difficulty of learning MANO parameters for

a neural network, and our method is a better proposal to map a

sparse 3D skeleton to a dense hand surface.

Table 5: Skeleton to Surface Mapping.† indicates the results
regardless of the global rotation.

Methods MP2S↓ MCD↓ MHD↓
Iterative Baseline 6.64 2539.52 34.44

Iterative Baseline
†

2.57 49.02 9.37

IKNet 5.41 203.91 16.49

Model (C) 0.45 5.36 4.08

6 ABLATION STUDIES
Effect of the number of supervised point clouds and loss
items. The number of supervised points is a significant consider-

ation when using CD to supervise the training. We report exper-

iments on the different numbers of supervised points in Table 6.

On the FreiHAND dataset, the results show that the use of more

points leads to better uniformity and accuracy. It is reasonable that

the latter part of CD (in Eq. (9)) is a kind of uniformity constraint

when the |𝑆2 | > |𝑆1 |. While the supervision of 300 points achieves

Table 6: Ablation study of supervision point cloud on Com-
plement dataset.

Supervision Loss

Complement FreiHAND

MP2S↓ MCD↓ MHD↓ MP2S↓ MCD↓ MHD↓
100 points EMD 1.67 28.73 9.14 0.53 5.73 3.91
100 points CD 1.66 30.55 9.88 0.57 6.07 4.29

200 points CD 1.60 28.89 9.66 0.53 5.87 4.26

300 points CD 1.59 28.00 9.53 0.51 5.66 4.21

400 points CD 1.62 28.74 9.84 0.54 5.79 4.31

500 points CD 1.60 29.31 9.64 0.45 5.37 4.08

Best; Second best.

Table 7: The ablation study of Position Encoding on the Frei-
HAND dataset.

Position Encoding MP2S↓ MCD↓ MEMD↓ MHD↓
× 0.57 5.89 5.65 4.49

✓ 0.45 5.36 5.96 4.08

the best results on the Complement dataset, the result with 500

supervision points is still compelling. We suppose this difference

is caused by the limited training data. Furthermore, we report the

quantitative results of different loss items. Similar to CD, EMD is

also a frequently used loss function in point cloud generation. The

results claim when the supervision points have equal size with gen-

eration points, taking EMD as a loss item increases the uniformity

and the smoothness but decreases the accuracy of the generated

point cloud. The EMD is an alternative loss in our method.

Effect of the Position Encoding. In Table 7, we report the

experiment results with and without the position encoding mod-

ule. It turns out that position encoding significantly improves the

accuracy and quality of generated point clouds.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we first involve the point cloud in the hand represen-

tation and develop a disentangled and parameter-sharing model

based on the flexible structure of the point cloud, the articulated

property of hands, and strategy of Tri-Axis modeling. Our MLP-

based model has the advantage of accurately modeling geometry

shapes like implicit methods and of little compute cost. Extensive

experiments on public datasets validate these merits. By this model,

given hand skeleton information, the surface with high fidelity can

be obtained in real-time which shows application potential in AR.

One main hypothesis in our work is that the identity of the hand

subject and the hand bones’ length are highly correlated. However,

it does not hold all the time. For instance, the thickness of different

persons’ hand bones can be different even when their lengths are

the same. Hence, exploring a controllable shape parameterization,

like MANO [42], for our model is one of our future goals.
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