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Abstract Image and video inpainting is a classic prob-
lem in computer vision and computer graphics, aim-

ing to fill in the plausible and realistic content in the
missing areas of images and videos. With the advance
of deep learning, this problem has achieved significant

progress recently. The goal of this paper is to compre-
hensively review the deep learning-based methods for
image and video inpainting. Specifically, we sort ex-
isting methods into different categories from the per-

spective of their high-level inpainting pipeline, present
different deep learning architectures, including CNN,
VAE, GAN, diffusion models, etc., and summarize tech-

niques for module design. We review the training objec-
tives and the common benchmark datasets. We present
evaluation metrics for low-level pixel and high-level per-

ceptional similarity, conduct a performance evaluation,
and discuss the strengths and weaknesses of represen-
tative inpainting methods. We also discuss related real-
world applications. Finally, we discuss open challenges

and suggest potential future research directions.
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Fig. 1: Application examples of inpainting techniques:

photo restoration (top left: image from (Bertalmio
et al., 2000)), text removal (top right: image
from (Bertalmio et al., 2000)), undesired target re-

moval (bottom left: image from (Chen, 2018)), and face
verification (bottom right: image from (Zhang et al.,
2018c)).

1 Introduction

Image and video inpainting (Masnou and Morel, 1998;
Bertalmio et al., 2000) refers to the task of restoring
missing/occluded regions of a digital image or video

with plausible and natural content. Inpainting is an
underconstrained problem with multiple plausible so-
lutions, especially if there are large missing regions. In-
painting has many important applications in multiple
fields, such as cultural relic restoration, virtual scene
editing, digital forensics, and film and television pro-
duction, etc. Fig. 1 shows some important applications
of inpainting techniques. Video is composed of multiple
images exhibiting temporal coherence, therefore, video
inpainting is closely related to image inpainting, where

the former often learns from or extends the latter. For
this reason, we simultaneously review image and video
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Fig. 2: The rough number of papers on image and video
inpainting per year.

inpainting in this survey, and the number of papers is

shown in Fig. 2.

Early image inpainting methods mainly depend on
low-level features of corrupted images, including PDE-
based methods (Bertalmio et al., 2000; Ballester et al.,

2001; Tschumperlé and Deriche, 2005) and patch-based
methods (Efros and Leung, 1999; Barnes et al., 2009;
Darabi et al., 2012; Huang et al., 2014; Herling and

Broll, 2014; Guo et al., 2018). PDE-based approaches
usually propagate the information from the boundary
to create a smooth inpainting. It is possible to prop-

agate edge information, but it is hard to inpaint tex-
tures. Instead of only considering the boundary infor-
mation, patch-based approaches recover the unknown
regions by matching and duplicating similar patches of
known regions. For smaller areas, patch-based methods
can inpaint textures and also inpaint complete objects
if similar objects are available in other image regions.
However, these traditional methods have limited abil-
ity to generate new semantically plausible content, es-
pecially for large missing regions and missing regions
that are not similar to other image regions. A compre-

hensive review on classical image inpainting methods
is beyond our scope, and we refer readers to the sur-
veys (Guillemot and Meur, 2014; Jam et al., 2021) for
more details.

By contrast, deep learning holds the promise to in-
paint large regions and also inpaint new plausible con-
tent that was learned from a larger set of images. In the

beginning convolutional neural networks (CNNs) and
generative adversarial networks (GANs) were the most
popular choices in the inpainting literature. CNNs are
a class of feed-forward neural networks that consist of
convolutional, activation, and down-/up-sampling lay-

ers. They learn a highly non-linear mapping from the in-
put image to the output image. GANs are a type of gen-
erative model consisting of a generator and a discrim-
inator that estimates the data distribution through an
adversarial process. Recently, more attention has been
paid to the transformer architecture and generative dif-
fusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020). Transformers are a prevalent network architec-
ture based on parallel multi-head attention modules.
Compared to the locality of CNNs, transformers have
a better ability for contextual understanding. Diffusion
probabilistic models are a type of latent variable model,
which mainly contain the forward process, the reverse
process, and the sampling procedure. Diffusion models
learn to reverse a stochastic process (i.e., diffusion pro-
cess) that progressively destroys data via adding noise.
These deep learning-based image inpainting methods
can achieve attractive results that surpass traditional
methods in many aspects. From the perspective of the
high-level inpainting pipeline, existing inpainting meth-
ods can be classified into three categories: a single-shot

framework, a two-stage framework, and a progressive
framework. Orthogonal to these main approaches, dif-
ferent technical methods can be observed in their real-
ization, including mask-aware design, attention mecha-

nisms, multi-scale aggregation, transform domain, deep
prior guidance, multi-task learning, structure represen-
tations, loss functions, etc.

Compared with images, video data has an additional

time dimension. Therefore, video inpainting not only
fills in reasonable content in the missing regions for
each frame but also aims to recover a temporally consis-

tent solution. Because of this close relationship between
image inpainting and video inpainting, many technical
ideas used in image inpainting are often applied and ex-
tended to solve video inpainting tasks. Traditional video
inpainting methods are usually based on patch sam-
pling and synthesis (Wexler et al., 2007; Granados et al.,
2012; Newson et al., 2014; Huang et al., 2016). These

methods have limited ability to synthesize consistent
content and capture complex motion and are often com-
putationally expensive. To address these shortcomings,
many deep learning-based methods have been proposed
and achieved significant progress. There mainly exist
four research directions: 3D CNN-based methods, shift-
based methods, flow-guided methods, and attention-
based methods. The core idea of these methods is to
transfer information from neighboring frames to the
target frame. 3D CNNs are the direct extension of 2D

CNNs and work in an end-to-end manner. However,
they often suffer from spatial misalignment and high
computational cost. Shift-based methods can address
these limitations to some extent, but within a limited
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temporal window only. Flow-guided approaches can pro-
duce higher resolution and temporally consistent results
but are vulnerable to imperfect optical flow completion
due to occlusion and complex motion. Attention-based
methods fuse known information from short and long
distances. Unfortunately, inaccurate attention score es-
timation often leads to blurry results.

To our knowledge, there are several papers that re-
view the deep learning-based inpainting works in the
literature. Elharrouss et al. (2020) categorizes image
inpainting methods into sequential-based, CNN-based,
and GAN-based methods, and reviews related papers.
To improve on their work, we also discuss common
methodological approaches, loss functions, and evalua-
tion metrics. We also add more discussion about further
research directions and include newer work. Jam et al.
(2021) reviews the traditional and deep learning-based
image inpainting methods. However, they paid much
attention to the traditional methods but have signifi-
cantly fewer deep learning-based works compared to our
survey. Weng et al. (2022) reviews some GAN-based im-

age inpainting methods, but is generally shorter. More-
over, these existing surveys do not review the image
and video inpainting simultaneously.

2 Image Inpainting

For the restoration of missing regions in an image, the
results sometimes are not unique, especially for large
missing areas. Consequently, there mainly exists two

lines of research in the literature: (1) deterministic im-
age inpainting and (2) stochastic image inpainting. Given
a corrupted image, deterministic image inpainting meth-

ods only output an inpainted result while stochastic im-
age inpainting methods can output multiple plausible
results with a random sampling process. Inspired by
multi-modal learning, some researchers have recently
focused on text-guided image inpainting by providing
additional information with text prompts.

2.1 Deterministic Image Inpainting

From the perspective of a high-level inpainting pipeline,
existing works for deterministic image inpainting usu-
ally adopt three types of frameworks: single-shot, two-
stage, and progressive. The single-shot framework usu-
ally adopts a generator network with a corrupted im-
age as input and an inpainted image as output; The
two-stage framework mainly consists of two generators,
where the first generator achieves a rough result and

then the second generator improves upon it; The pro-

Fig. 3: Representative pipeline of the single-shot in-
painting framework. The generator takes as input the
concatenation of a binary mask and a corrupted image
and outputs the completed image. Training objectives
are used for training the generator.

gressive framework applies one or more generators to
iteratively recover missing regions along the boundary.

2.1.1 Single-shot framework

Many existing inpainting methods adopt a single-shot
framework, as shown in Fig. 3. It essentially learns a
mapping from a corrupted image to a complete image.
The framework usually consists of generators and cor-

responding training objectives.

Generators. To improve the inpainting ability of
the generator, there exist several lines of research: mask-
aware design, attention mechanism, multi-scale aggre-
gation, transform domain, encoder-decoder connection,

and deep prior guidance.

(1) Mask-aware design.
The missing regions (indicated with a binary mask)
have different shapes and convolutional operations over-
lapping with these missing regions may be the source

of visual artifacts. Therefore, some researchers proposed
mask-aware solutions for classical convolutional opera-
tion and normalization. Inspired by the inherent spa-

tially varying property of image inpainting, Ren et al.
(2015) designed a Shepard interpolation layer where the
feature map and mask both conduct the same convo-
lution operation. Its output is the fraction of feature
convolution and mask convolution results. Mask con-
volution can simultaneously update the mask. To bet-
ter handle various irregular holes and evolve the hole
during mask updating, Liu et al. (2018) proposed a
mask-guided convolution operation, i.e., partial con-
volution, which distinguishes between the valid region
and hole in a convolutional window. Xie et al. (2019)
proposed trainable bidirectional attention maps to ex-
tend the partial convolution (Liu et al., 2018), which
can adaptively learn the feature re-normalization and

mask-updating.

Different from the feature normalization considered
by previous methods, Yu et al. (2020) focused on the
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mean and variance shift-related normalization and in-
troduced a spatial region-wise normalization into the
inpainting network. Wang et al. (2020c) designed a vi-
sual consistency network for blind image inpainting.
They first predicted the damaged regions yielding a
mask, and then applied an inpainting network with
the proposed probabilistic context normalization, which
transfers the mean and variance from known features to
unknown parts building on different layers. Inspired by
filling holes with pixel priorities (Criminisi et al., 2004;
Zhang et al., 2019b), Wang et al. (2021c) used a struc-
ture priority (in low-resolution features) and a texture
priority (in high-resolution features) in partial convo-
lution (Liu et al., 2018). Wang et al. (2021a) proposed
a dynamic selection network to utilize the valid pixels
better. Specifically, they designed a validness migrat-
able convolution to dynamically sample the convolu-
tional locations, and a regional composite normaliza-
tion module to adaptively composite batch, instance,
and layer normalization on mask-based selective fea-
ture maps. Zhu et al. (2021) learned to derive the con-

volutional kernel from the mask for each convolutional
window and proposed a point-wise normalization that
produces the mask-aware scale and bias for batch nor-

malization.

(2) Attention mechanism.
Attention is a prevalent tool to model correlation in
the field of natural language processing Vaswani et al.

(2017) and computer vision (Wang et al., 2018b; Fu
et al., 2019). Attention is better at accessing features
of distant spatial locations than convolution. In the lit-

erature, Yu et al. (2018) was the first to introduce a con-
textual attention mechanism to image inpainting. This
pioneering work inspired many following works. To en-
hance both visual and semantic coherence, Zeng et al.
(2019) proposed a pyramid-context encoder network
with an attention transfer method, where the attention
score computed in a high-level feature is used for low-

level feature updating. Instead of using one fixed patch
size for attention computation, Wang et al. (2019b) pro-
posed a multi-scale contextual attention model with
two different patch sizes followed by a channel atten-
tion block (Hu et al., 2018). Wang et al. (2020b) in-
troduced a multistage attention module that performs
large patch swapping in the first stage and small patch

swapping in the next stage. Qin et al. (2021) combined
spatial-channel attention (Chen et al., 2017) and a spa-
tial pyramid structure to construct a multi-scale atten-
tion unit (MSAU). This unit separately conducts spa-
tial attention on four feature maps obtained by different
dilation convolutions and then applies augmented chan-
nel attention on concatenated attentive features. Zhang
et al. (2022e) proposed a structure and texture interac-

tion network for image inpainting. They designed a tex-
ture spatial attention module to recover texture details
with robust attention scores guided by coarse structures
and introduced a structure channel excitation module
to recalibrate structures according to the difference be-
tween coarse and refined structures.

In addition, some recent works proposed image in-
painting networks based on vision transformers (Doso-
vitskiy et al., 2021). Deng et al. (2021) proposed a con-
textual transformer network to complete the corrupted
images. Their network mainly depends on the multi-
scale multi-sub-head attention, which is extended from
the original multi-head attention proposed by (Vaswani
et al., 2017). Cao et al. (2022) incorporated rich prior
information from the ViT-based masked autoencoder
(MAE) (He et al., 2022) into image inpainting. Specifi-
cally, the pre-trained MAE model provides the features
prior to the encoder of the inpainting network and the
attention prior to making the long-distance relationship
modeling easier. Instead of using shallow projections or

large receptive field convolutions to sequence the incom-
plete image, Zheng et al. (2022a) designed a restrictive
CNN head with a small and non-overlapping receptive

field as token representation. Deng et al. (2022) mod-
ified multi-head self-attention by inserting a Laplace
distance prior, which computes the similarity consider-
ing the features and their locations simultaneously.

(3) Multi-scale aggregation.
In the literature on image processing, multi-scale aggre-

gation is a common method to fuse information from
different resolutions. Wang et al. (2018c) designed a
generative multi-column inpainting network, consisting

of three convolution branches with different filter ker-
nel sizes, to fuse multi-scale feature representations. To
create a smooth transition between the inpainted re-
gions with existing content, Hong et al. (2019) pro-
posed a deep fusion network with multiple fusion mod-
ules and reconstruction loss applied on multi-scale lay-
ers. The fusion module merged predicted content with
the input image via a learnable alpha composition. Hui
et al. (2020) proposed a dense multi-scale fusion mod-
ule, which fuses hierarchical features obtained by multi-
ple convolutional branches with different dilation rates.
Zheng et al. (2021b) designed a progressive multi-scale
fusion module to extract multi-scale features in parallel
and progressively fuse these features, yielding more rep-

resentative local features. Inspired by the high-resolution
network (HRNet) for visual recognition (Sun et al.,
2019; Wan et al., 2021), Wang et al. (2021c) introduced
a parallel multi-resolution fusion network for image in-
painting. This network can simultaneously conduct in-
painting in multiple resolutions with mask-aware and

attention-guided representation fusion methods. Phutke
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and Murala (2021) also followed a multi-path design,
where they introduce four concurrent branches with
different resolutions in the encoder. A residual module
with diverse receptive fields is designed as the building
block of the encoder. Cao and Fu (2021) proposed a
multi-scale sketch tensor network for man-made scene
inpainting. This network reconstructs different types
of structures by adding constraints on predicted lines,
edges, and coarse images with different scales. Differ-
ent from the mask-blind processing (Li et al., 2020b;
Qin et al., 2021) of multi-scale features produced by
convolution with different dilation rates, Zeng et al.
(2022) carefully designed a gated residual connection,
which considers the difference between holes and valid
regions. They also proposed a soft mask-guided Patch-
GAN, where the discriminator is trained to predict the
soft mask obtained by Gaussian filtering.

(4) Transform domain.
Instead of conducting image inpainting in the spatial

domain, some existing works designed inpainting frame-
works in a transformed domain via the DWT (discrete
wavelet transform) (Daubechies, 1990) and the FFT
(fast Fourier transform). Wang et al. (2020a) recast the

image inpainting problem as predicting low-frequency
semantic structures and high-frequency texture details.
Specifically, they decomposed the corrupted image into

different frequency components via the Haar wavelet
transform (Mallat, 1989), designed a multi-frequency
probabilistic inference model to predict the frequency

content in missing regions, and inversely transformed
back to image space. Yu et al. (2021a) adopted a simi-
lar inpainting pipeline. For the multi-frequency comple-
tion, they proposed a frequency region attentive nor-
malization module to align and fuse the features with
different frequencies and applied two discriminators to
two high-frequency streams. Li et al. (2021) extracted

high-frequency subbands as the texture and introduced
a DWT loss to constrain the fidelity of low- and high-
frequency subbands. LaMa (Suvorov et al., 2022) com-
bined the residual design (He et al., 2016) and fast
Fourier convolution (Chi et al., 2020) to construct a fast
Fourier convolution residual block, which is integrated
into the encoder-decoder network to handle large mask

inpainting. Lu et al. (2022) further improved LaMa by
introducing various types of masks and adding the fo-
cal frequency loss (Jiang et al., 2021) to constrain the
spectrum of the images.

(5) Encoder-decoder connection.
Some works modify the basic encoder-decoder architec-
ture by introducing carefully designed feature connec-
tions. Shift-Net (Yan et al., 2018) modified the U-Net
architecture by introducing a specific shift-connection

layer, which shifts the encoder features of the valid re-

gion to the missing regions with a guidance loss. Dol-
hansky and Ferrer (2018) introduced an eye inpaint-
ing network that merges the identifying information of
the reference image encoding as a code. Shen et al.
(2019) designed a densely connected generative net-
work for semantic image inpainting. They combined
four symmetric U-Nets with dense skip connections.
Liu et al. (2020) introduced a mutual encoder-decoder
CNN, fusing the texture and structure features (from
the shallow and deep layers of the encoder), to jointly
restore the structure and texture with feature equaliza-
tion. Similarly, Guo et al. (2021) designed a two-stream
image inpainting network, which combines a structure-
constrained texture synthesis submodel and a texture-
guided structure reconstruction submodel. In addition,
they introduced a bi-directional gated feature fusion
module and a contextual feature aggregation module to
fuse and refine the resulting images. Feng et al. (2022)
inserted generative memory into the classical encoder-
decoder network to jointly exploit the high-level se-
mantic reasoning and the pixel-level content reasoning.
Based on (Liu et al., 2020), Liu et al. (2022) inferred

the texture and structure with a content-consistent ref-
erence image through a feature alignment module.

(6) Deep prior guidance.
To enhance the performance of the inpainting gener-

ator, some works have explored the deep prior from
a single image or a large image database. Lempitsky
et al. (2018) utilized a randomly-initialized generator

network as the prior to completing the corrupted im-
age by only reconstructing the known regions. Gu et al.
(2020) proposed mGANprior by incorporating a pre-

trained GAN as prior for image inpainting. Specifically,
this method reconstructs the incorrupt regions while
filling in the missing areas by adaptively merging multi-
ple generative feature maps from different latent codes.
Richardson et al. (2021) developed a pixel2style2pixel
(pSp) framework for image inpainting. They introduced
an encoder consisting of a feature pyramid and multiple

mapping networks to encode the damaged image into
extended latent space W+ (18 512-dimensional style
vectors), which is the extension of latent space W (Kar-
ras et al., 2019), and reused a pre-trained StyleGAN
generator as priors to achieve the complete image. To
handle the large missing regions and complex seman-
tics, Wang et al. (2022b) designed a dual-path image
inpainting framework with GAN inversion (Xia et al.,
2022). Given a corrupted image, the inversion path in-
fers the close latent code and extracts the correspond-

ing multi-layer features from the trained GAN model,
and the feed-forward path fills the missing regions by
merging the above semantic priors with a deformable
fusion module. To guarantee the invariance of the valid
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area in the corrupted and completed images, Yu et al.
(2022b) modified the GAN inversion pipeline (Richard-
son et al., 2021) by designing the mapping network with
a pre-modulation module and introducing F&W+ la-
tent space, where F are the feature maps of the cor-
rupted image.

Training objectives. The training objective is a
very important component of deep learning-based im-
age inpainting methods. Pixel-wise reconstruction loss,
perceptual loss (Johnson et al., 2016), style loss (Gatys
et al., 2016), and adversarial loss (Goodfellow et al.,
2014) are the prevalent training objectives. The ad-
versarial loss is obtained by a discriminator network.
Pathak et al. (2016) and Li et al. (2019b) adopted the
discriminator (stacked convolution and down-sampling)
from DCGAN (Radford et al., 2016). Considering Pathak
et al. (2016)’s method struggles to maintain local con-
sistency with the surrounding regions, Iizuka et al. (2017)
proposed local and global discriminators, which gener-
ate more realistic contents. Yu et al. (2018) proposed

a patch-based discriminator, which can be regarded as
the generalized version of local and global discrimina-
tors (Iizuka et al., 2017). This patch-based discrimina-

tor is subsequently used in many following works. Liu
et al. (2021c) designed two discriminators with small-
and large-scale receptive fields to guide the inpainting

network for fine-grained image detail generation.

Besides, researchers have also introduced some care-
fully designed losses. Li et al. (2017) introduced a se-

mantic parsing loss for face completion. Yeh et al. (2017)
proposed context and prior losses to search the clos-
est encoding in the latent image manifold for inferring

the missing content. Vo et al. (2018) proposed a struc-
tural reconstruction loss, which is the combination of
reconstruction errors in pixel and feature space. For ex-
plicitly exploring the structural and textural coherence
between filled contents and their surrounding contexts,
Li et al. (2019a) utilized the local intrinsic dimension-
ality (Houle, 2017a,b) in the image- and patch-level to
measure and constrain the alignment between data sub-
manifolds of inpainted contents and those of the valid
pixels. To stabilize the training process of face inpaint-
ing, i.e., weakening gradient vanishing and model col-
lapse, Han and Wang (2021) trained the generator via
neuro-evolution and optimized the generator’s parame-
ters by mutation and crossover.

Some researchers introduced additional training ob-
jectives via multi-task learning. Liao et al. (2018a) pre-
sented a novel collaborative framework by training a
generator simultaneously on multiple tasks, i.e., face
completion, landmark detection, and semantic parsing.
To enhance the inpainting capability of the network for
image structure, Yang et al. (2020) designed a struc-

ture restoration branch in the decoder and explicitly
inserted the structure features into the primary inpaint-
ing process. Appropriate semantic guidance is a suit-
able tool for image inpainting (Song et al., 2018b), in-
spired by this, Liao et al. (2020, 2021b,a) proposed a
unified framework to jointly predict the segmentation
maps and recover the corrupted images. Specifically,
Liao et al. (2020, 2021b) designed a semantic guidance
and evaluation network that iteratively updates and
evaluates a semantic map and infers the missing con-
tents in multiple scales. However, this method may cre-
ate implausible textures and blurry boundaries, espe-
cially on mixed semantic regions. To solve this problem,
Liao et al. (2021a) devised a semantic-wise attention
propagation module to apply the attention operation
on the same semantic regions. They also introduced two
coherence losses to constrain the consistency between
the semantic map and the structure and texture of the
inpainted image. Zhang et al. (2020b) studied how to
improve the visual quality of inpainted images and pro-
posed a pixel-wise dense detector for image inpaint-

ing. This detection-based framework can localize the
artifacts of completed images, and the corresponding
position information is combined with the reconstruc-
tion loss to better guide the training of the inpainting

network. Zhang et al. (2021) introduced the semantic
prior estimation as a pretext task with a pre-trained
multi-label classification model, and then utilized the

learned semantic priors to guide the inpainting pro-
cess through a spatially-adaptive normalization mod-
ule (Park et al., 2019). Yu et al. (2022a) jointly solved
image reconstruction, semantic segmentation, and edge

texture generation. Each branch is implemented with
a transformer network, and a multi-scale spatial-aware
attention block is developed to guide the main image
inpainting branch from the other two branches. Similar
to (Zhang et al., 2020b), Zhang et al. (2022d) first local-
ized the perceptual artifacts from the completed image,

and then used this information to guide the iterative
refinement process. They also manually annotated an
inpainting artifact dataset.

2.1.2 Two-stage framework

Coarse-to-fine methods. This kind of method first
applies a generator to fill the holes with coarse con-
tents, and then refine them via the second generator,
as shown in Fig. 4(a). Yu et al. (2018) modified the
generative inpainting framework with cascaded coarse

and refinement networks. In the refinement stage, they
designed a contextual attention module modeling the
long-term correlation to facilitate the inpainting pro-
cess.
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(a) Coarse-to-fine

(b) Structure-then-texture

Fig. 4: Two types of the two-stage inpainting framework: (a) coarse-to-fine (Yu et al., 2018) where the first network
predicts an initial coarse result and the second network predicts a refined result; (b) structure-then-texture (Nazeri
et al., 2019) where the first network predicts a structure map and the second network predicts a complete image.

An apparent difference between these two types is that the structure-then-texture methods explicitly predict the
structure map in the first stage.

Many later works refined different aspects of this
classical coarse-to-fine framework. Inspired by mask-
aware convolution (Liu et al., 2018) for irregular holes,

Yu et al. (2019) improved the previous network (Yu
et al., 2018) by introducing gated convolution that adap-
tively perceives the mask location. In the coarse stage,

Ma et al. (2019) proposed region-wise convolutions and
a non-local operation to process the discrepancy and
correlation between intact and damaged areas. PEPSI
Sagong et al. (2019) modified the two-stage feature en-

coding processes in (Yu et al., 2018) by sharing the
encoding network and organizing the coarse and fine
inpainting network in a parallel manner. PEPSI can
enhance the inpainting capability while reducing the
number of convolution operations and computational
resources. To further reduce the network parameters,
Shin et al. (2021) extended PEPSI by replacing the orig-
inal dilated convolutional layers (Yu and Koltun, 2016)
with a so-called rate-adaptive version, which shares the
weights for each layer but produces dynamic features
via dilation rates-related scaling and shifting opera-
tions. The contextual attention proposed by (Yu et al.,
2018) has a limited ability to model the relationships

between patches inside the holes, therefore, Liu et al.
(2019) introduced a coherent semantic attention layer,

which can enhance the semantic relevance and feature
continuity in the attention computation of hole regions.
In (Yu et al., 2018), several dilated convolutions are

applied to enlarge the receptive field. Li et al. (2020b)
replaced the dilated convolution with a spatial pyra-
mid dilation ResNet block with eight different dilation
rates to extract multi-scale features. Navasardyan and
Ohanyan (2020) designed a patch-based onion convo-
lution mechanism to continuously propagate informa-
tion from known regions to the missing ones. This con-
volution mechanism can capture long-range pixel de-
pendencies and achieve high efficiency and low latency.
Wadhwa et al. (2021) proposed a hypergraph convo-

lution with a trainable incidence matrix to generate
globally semantic completed images and replaced the
regular convolutions with gated convolution in the dis-
criminator to enhance the local consistency of inpainted
images.

Due to the computational overhead and the lack of
supervision for the contextual attention in (Yu et al.,
2018), Zeng et al. (2021b) removed this attention block
and learned its patch-borrowing behavior with a so-
called contextual reconstruction loss. Based on the in-
sight that recovering different types of missing areas

need a different scope of neighboring areas, Quan et al.
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(2022) designed a local and global refinement network
with small and large receptive fields, which can be di-
rectly applied to the end of existing networks to further
enhance their inpainting capability. Kim et al. (2022)
developed a coarse-super-resolution-refine pipeline, where
they add a super-resolution network to reconstruct finer
details after the coarse network and introduce a pro-
gressive learning mechanism to repair larger holes.

Some works adopt a coarse-to-fine framework to ob-
tain high-resolution inpainting. Yang et al. (2017) de-
signed a two-stage inpainting framework consisting of
a content network and a texture network. The former
predicts the holistic content in the low resolution (128×
128) and the latter iteratively optimizes the texture
details of missing regions from low to high resolution
(512 × 512). Song et al. (2018a) developed an image-
to-feature network to infer coarse results, and then de-
signed a patch-swap method to refine the coarse fea-
tures. The swapped feature map is translated to a com-

plete image via a Feature2Image network. In addition,
this framework can be directly used for high-resolution
inpainting by upsampling the complete image as the
input of refine stage with a multi-scale inference. Yi

et al. (2020) proposed a contextual residual aggrega-
tion mechanism for ultra high-resolution image inpaint-
ing (up to 8K). Specifically, a low-resolution inpaint-

ing result was first predicted via a two-stage coarse-
to-fine network and then the high-resolution result was
generated by adding the large blurry image with the

aggregated residuals, which are obtained by aggregat-
ing weighted high-frequency residuals from contextual
patches. Zhang et al. (2022c) focused on image inpaint-
ing for 4K or more resolution. They first fill the hole

via LaMa (Suvorov et al., 2022), predict depth, struc-
ture, and segmentation map from the initially com-
pleted image, then generate multiple candidates with
a multiply-guided PatchMatch (Barnes et al., 2009),
and finally choose a good output using the proposed
auto-curation network. To complete the high-resolution
image with limited resources, these methods first pre-
dicted the coarse content at the low-resolution level and
then refine the texture details at the high-resolution
level (sometimes with multi-scale inferences).

Other works also follow the basic coarse-to-fine strat-
egy, but they are clearly different from the framework
proposed by (Yu et al., 2018). After obtaining the coarse
result with an initial prediction network, Li et al. (2019d)
applied a super-resolution network as the refinement
stage to produce high-frequency details. Roy et al. (2021)
predicted the coarse results in the frequency domain by
learning the mapping of the DFT of the corrupted im-
age and its ground truth. Based on the insight that

patch-based methods (Barnes et al., 2009; He and Sun,

2012) fill the missing regions with high-quality texture
details, Xu et al. (2021) proposed a texture memory-
augmented patch synthesis network with a patch dis-
tribution loss after the coarse inpainting network.

Structure-then-texture methods. Structure and
texture are two important components of the image,
therefore, some works decompose the image inpainting
as the structure inference and the texture restoration,
as shown in Fig. 4(b). Sun et al. (2018b) designed a two-
stage head inpainting obfuscation network. The first
stage generates facial landmarks and the second stage
recovers the head image guided by the landmarks. Song
et al. (2019) first estimated the facial geometry includ-
ing landmark heatmaps and parsing maps, and then
concatenated these results with a corrupted face image
as the input of the complete network to recover face
images and disentangle masks. Liao et al. (2018b) and
Nazeri et al. (2019) both proposed an edge-guided im-
age inpainting method, which first estimates the edge

map for the missing regions, and then utilizes this edge
map prior to predicting the texture details. Similarly,
Xiong et al. (2019) explicitly disentangled the image

inpainting problem into two sub-tasks of foreground
contour prediction and content completion. To improve
the structural guidance of coarse edge maps, Ren et al.

(2019) introduced another representation of the struc-
ture, i.e., the edge-preserving smoothing via filtering
operation. Based on the structure reconstruction of the
first network, they inpainted missing regions using ap-

pearance flow. Shao et al. (2020) combined the edge
map and color aware map as the representation of the
structure, where the former is captured via the Canny

operator (Canny, 1986) and the latter is obtained through
Gaussian blur with a large kernel. For the specific Manga
inpainting, Xie et al. (2021) first completed a semantic
structure map, including the structural lines and the
ScreenVAE map (a point-wise representation of screen-
tones) (Xie et al., 2020), using a semantic inpainting
network. Then, the completed semantic map is used for
guiding the appearance synthesis. Wang et al. (2021b)
designed an external-internal learning inpainting frame-
work. It first reconstructs the structures in the monochro-
matic space using the knowledge externally learned from
large datasets. Based on internal learning, then, it ap-
plies a multi-stage network to recover the color infor-
mation via iterative optimization. Besides the edge map

used in (Nazeri et al., 2019), Yamashita et al. (2022) in-
corporated the depth image to provide the boundaries
between different objects. Their method first completed
the masked edge and depth images separately and then
recovered the missing regions via an RGB image in-
painting network taking as input the concatenation of

masked images, inpainted edges, and depth images. To
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Fig. 5: Progressive image inpainting. The image comes
from (Zhang et al., 2018a).

contain richer structural information, Wu et al. (2022)
choose the local binary pattern (LBP) (Ojala et al.,
1996, 2002), which describes the distribution informa-

tion of edges, speckles, and other local features (Zhang
et al., 2010). In (Wu et al., 2022), the first network in-
fers the LBP information of the holes, and the second

network with spatial attention conducts the actual im-
age inpainting. Dong et al. (2022) utilized a transformer
to complete the holistic structure in a grayscale space

and proposed a masking positional encoding for large
irregular masks.

In addition, semantic segmentation maps are also
used as the proxy of structure (Song et al., 2018b; Qiu
et al., 2021; Zhou et al., 2021). Song et al. (2018b) in-
troduced the semantic segmentation information into
the image inpainting process to improve the recovered
boundary between different class regions. They first
predict the segmentation map of missing regions via

a U-Net and then recover the missing contents with the
guidance of the above inpainted semantic map using the
second generator network. Song et al. (2018b) utilized
the pre-classification algorithm (Felzenszwalb and Hut-
tenlocher, 2004) to extract a semantic structure map.
After the completion of the semantic map, they em-
ployed a spatial-channel attention module to generate

the texture information. Zhou et al. (2021) first pre-
dicted the complete segmentation map via a segmen-
tation reconstructor, and then recovered fine-grained
texture details with an image generator based on a re-
lation network. The relation network is an extension of
SPADE (Park et al., 2019) to better modulate features
via spatially-adaptive normalization with the relation
graph.

2.1.3 Progressive frameworks

Following the basic idea of traditional inpainting meth-
ods, some works have been proposed to exploit progres-
sive inpainting with deep models. As shown in Fig. 5,
the progressive methods iteratively fill in the holes from
the boundary to the center of the holes, and the miss-
ing area gradually becomes smaller until it disappears.
Zhang et al. (2018a) formulated image inpainting as
a sequential problem, where the missing regions are
filled in four inpainting phases. They designed an LSTM
(long short-term memory) (Hochreiter and Schmidhu-
ber, 1997)-based framework to string these four inpaint-
ing phases together. However, this method cannot han-
dle irregular holes common in real-world applications.
Guo et al. (2019) devised a residual architecture to
progressively update irregular masks and introduced
a full-resolution network to facilitate feature integra-
tion and texture reconstruction. Inspired by structure-
guided inpainting methods (Nazeri et al., 2019; Xiong
et al., 2019), Li et al. (2019c) proposed a progressive
reconstruction with a visual structure network to in-

corporate structure information into the visual features
step by step, which can generate a more structured im-
age. Progressive inpainting methods have the potential

to fill in large holes, however, it is still difficult due to
the lack of constraints on the hole center. To handle
this drawback, Li et al. (2020c) designed a recurrence
feature reasoning network with consistent attention and

weighted feature fusion. This network recurrently infers
and gathers the hole boundaries of the feature map so
as to progressively strengthen the constraints for esti-

mating internal contents. Zeng et al. (2020b) proposed
an iterative inpainting method with confidence feed-
back for high-resolution images. SRInpaintor (Li et al.,
2022a) combined super-resolution and the transformer
in a progressive pipeline. It reasons about the global
structure in low resolution, and progressively refines the
texture details in high resolution.

To this end, we organize the important and preva-
lent technical aspects for the network design, as shown
in Table 1.

2.2 Stochastic Image Inpainting

Image inpainting is an underdetermined inverse prob-
lem. Therefore, multiple plausible solutions exist. We
use the term stochastic image inpainting to refer to
methods capable of producing multiple solutions with

a random sampling process.
VAE-based methods. A variational autoencoder

(VAE) (Kingma andWelling, 2014) is a generative model
that combines an encoder and a decoder. The encoder
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Table 1: The summary of important techniques for deep learning-based image inpainting.

Aspects Blocks Core idea

mask-aware convolution

Shepard interpolation (Ren et al., 2015) translation variant interpolation
partial convolution (Liu et al., 2018) convolution on valid regions
gated convolution (Yu et al., 2019) adaptive gating

priority-guided partial convolution (Wang et al., 2021c) structure and texture priority

Attention

contextual attention (Yu et al., 2018) background patches with high
similarity to the coarse prediction

coherent semantic attention (Liu et al., 2019) correlation between patches within the hole
multi-scale attention module (Wang et al., 2019b) attention with two patch sizes

multi-scale attention uint (Qin et al., 2021) attention with four different dilation rates

Normalization

region normalization (Yu et al., 2020) spatial and region-wise
probabilistic context normalization (Wang et al., 2020c) transfer mean and variance
regional composite normalization (Wang et al., 2021a) batch, instance, and layer normalization

point-wise normalization (Zhu et al., 2021) mask-ware batch normalization
frequency region attentive normalization (Zhu et al., 2021) align low- and high-frequency features

Discriminator

global discriminator (Pathak et al., 2016) entire image
local discriminator (Iizuka et al., 2017) corrupted region

patch-based discriminator (PatchDis) (Yu et al., 2019) eense local patches
conditional multi-scale discriminator (Li et al., 2020b) PatchDis with two different scales

soft mask-guided PatchDis (Zeng et al., 2022) central parts of the missing regions

learns an appropriated latent space and the decoder

transforms sampled latent representations back into new
data. Zheng et al. (2019) proposed a two-branch com-
pletion network, where the reconstructive branch mod-
els the prior distribution of missing parts and recon-

structs the original complete image from this distri-
bution. The generative branch infers the latent con-
ditional prior distribution for the missing areas. This

framework is optimized by balancing the variance of
the conditional distribution and the reconstruction of
the original training data. Zheng et al. (2021a) extended

this work by estimating the distributions in a separate
training stage and introducing the patch-level short-
long term attention module. For stochastic fashion im-
age inpainting, Han et al. (2019) decomposed the in-
painting process as the shape and appearance genera-
tion. The network design for these two generation tasks
mainly adopts the VAE architecture. Based on a pre-

trained VAE on facial images, Tu and Chen (2019) first
searched for the possible set of solutions in the coding
vector space for the corrupted image, and then recov-
ers possible face images with the decoder of the VAE.
Zhao et al. (2020) proposed an instance-guided condi-
tional image-to-image translation network to learn con-
ditional completion distribution. Specifically, they first

encode the instance and masked images into two prob-
ability feature spaces, and then design a cross-semantic
attention layer to fuse two feature maps. A decoder is
finally used to generate the inpainted image. However,
Han et al. (2019) and Zhao et al. (2020) often suffer
from distorted structures and blurry textures due to the
joint optimization of structure and appearance. Peng
et al. (2021) designed a two-stage pipeline, where the

first stage produces multiple coarse results with differ-
ent structures based on a hierarchical vector quantized

variational auto-encoder, and the second stage synthe-
sizes the texture under the guidance of the discrete
structural features.

GAN-based methods. GAN (Goodfellow et al.,
2014) learns the data distribution via an adversarial
process. A generator is applied to transform sampled

Gaussian random noise into image space and a dis-
criminator is used to differentiate the real sample and
fake sample. Based on the premise that the degree of
freedom increases from the hole boundary to the hole

center, Liu et al. (2021a) introduced a spatially prob-
abilistic diversity normalization to modulate the pixel
generation with diversity maps. Considering that min-
imizing the classical reconstruction loss hampers the
diversity of results, they also proposed a perceptual di-
versity loss that maximizes the distance of two gen-

erated images in the feature space. By combining the
image-conditional and unconditional generative archi-
tectures, Zhao et al. (2021) proposed a co-modulated
GAN for large-scale image inpainting. Technically, they
encode the incomplete input image into a conditional
latent vector, which is then concatenated with the orig-
inal style vector of StyleGAN2 (Karras et al., 2020).

To enhance the diversity and control of image inpaint-
ing, Zeng et al. (2021a) applied the patch matching
from the training samples on the basis of coarse in-
painted results. In particular, they designed the near-
est neighbor-based pixel-wise global matching (from a
single image) and compositional matching (from mul-
tiple images). Inspired by CoModGAN (Zhao et al.,
2021), Zheng et al. (2022b) proposed a cascaded mod-
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ulation GAN, which combines the global modulation
and the spatially-adaptive modulation in each scale of
the decoder, and replaces the common convolution with
fast Fourier convolution (Chi et al., 2020) in the en-
coder. To directly complete the high-resolution image,
Li et al. (2022b) proposed a mask-aware transformer
module with a dynamic mask updating as (Liu et al.,
2018). This module conducts non-local interactions only
using partially valid tokens in a shifted-window man-
ner Liu et al. (2021d). Following (Chen et al., 2019;
Karras et al., 2019), they developed a style manipula-
tion module for stochastic generations.

Flow-based methods. Normalizing Flows (Tabak
and Vanden-Eijnden, 2010; Dinh et al., 2014; Rezende
and Mohamed, 2015) are a generative method that con-
structs a complex probability distribution by assem-
bling a sequence of invertible mappings. Inspired by
Glow (Kingma and Dhariwal, 2018) and its conditional
extension (Lugmayr et al., 2020), Wang et al. (2022a)

proposed a conditional normalizing flow network to learn
the probability distribution of structure priors. Then,
another generator is applied to produce the final com-
plete image with rich texture.

MLM-based methods. To produce a stochastic
structure in the missing region, Yu et al. (2021b) and

Wan et al. (2021) adopted a sequence prediction pipeline
based on a masked language model (MLM). Yu et al.
(2021b) proposed a bidirectional and auto-regressive

transformer as the low-resolution stochastic-structure
generator, which predicts masked token (missing re-
gions) via a top-K sampling strategy during inference.
Then, a texture generator was applied to generate mul-

tiple inpainted results. Similarly, Wan et al. (2021) pro-
posed a Transformer-CNN framework. They first ap-
ply a transformer training with MLM objective to pro-

duce a low-resolution image with pluralistic structures
and some coarse textures, and then utilize an encoder-
decoder network to enhance the local texture details of
the high-resolution complete image.

Diffusion model-based methods.Diffusion mod-
els (DM) are emerging generative models for image
synthesis. Here, we only review diffusion model-based
inpainting methods, and we refer readers to the sur-
veys (Yang et al., 2023; Croitoru et al., 2023) about a
comprehensive introduction to diffusion models. Gen-
erally, diffusion-based inpainting models employ a U-
Net architecture. The training objectives are usually

based on LDM = Ex,ϵ∈N (0,1),t[∥ϵ − ϵθ(xt, t)∥22], where
t = 1 . . . T , xt is a noised version of x, and ϵθ(·, t) is a
neural network. In the literature, existing works mainly
focused on the sampling strategy design and the com-
putational cost reduction.

(1) Sampling strategy design.
Based on an unconditionally pre-trained denoising dif-
fusion probabilistic model (DDPM) (Ho et al., 2020),
Lugmayr et al. (2022) modified the standard denoising
strategy by sampling the masked regions from the dif-
fusion model and sampling the unmasked areas from
the given image. To preserve the background and im-
prove the consistency, Xie et al. (2023) added an extra
mask prediction to the diffusion model. In the inference
stage, the predicted mask is used to guide the sampling
process.

(2) Computational cost reduction.
Instead of applying the diffusion process in pixel space,
Esser et al. (2021) utilized a multinomial diffusion pro-
cess (Hoogeboom et al., 2021; Austin et al., 2021) on
a discrete latent space and autoregressively factorized
models for the reverse process. These designs enable
ImageBART to generate high-resolution images, e.g.,
300× 1800. Similarly, Rombach et al. (2022) proposed
a latent diffusion model (LDM) to reduce the training
cost of DMs while boosting visual quality, which can be

applied to the image inpainting task at a high resolution
of 10242 pixels. To overcome the limitation of massive
iterations in the diffusion model, Li et al. (2022c) pro-
posed a spatial diffusion model (SDM) with decoupled

probabilistic modeling, where the mean term refers to
the inpainted result and the variance term measures
the uncertainty. Instead of starting with random Gaus-

sian noise in the reverse conditional diffusion, Chung
et al. (2022) remarkably reduced the number of sam-
pling steps with a better initialization by starting from
forward-diffused data.

2.3 Text-guided Image Inpainting

Text-guided image inpainting takes an incomplete im-
age and text description as input and generates text-
aligned inpainting results. The main challenge lies in
how to fuse the text and image semantic features, and
how to focus on effective information in the text. Zhang
et al. (2020a) proposed a dual attention mechanism to
obtain the semantic feature of the masked region by

finding unmatched words compared to the image and
applied DAMSM loss (Xu et al., 2018b) to measure the
similarity of text and image. Lin et al. (2020) intro-
duced an image-adaptive word demand module that re-
moves redundant information and aggregates text fea-
tures in the coarse stage. They also proposed a text-
guided attention loss that pays more attention to the
reconstruction of the region affected by the text. Zhang
et al. (2020c) encoded text and image to sequential data
and exploited the transformer architecture to let cross-
modal features interact. To ensure that the inpainted
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Fig. 6: Representative examples of masks.

image matches the text, they took the masked text and
inpainted image as input to restore the text prompt. Wu

et al. (2021) incorporated word-level and sentence-level
textual features into a two-stage generator by introduc-
ing a dual-attention module. To eliminate the effection

of the background, the mask reconstruction module was
devised to recover the corrupted object mask. Xie et al.
(2022) applied multi-head self-attention as text-image
interactive encoder. They created a semantic relation

graph to compute non-Euclidean semantic relations be-
tween text and image, and used graph convolution to
aggregate node features. Li et al. (2023) followed a

coarse-to-fine image inpainting framework. They first
employed a visual-aware textual filtering mechanism to
adaptively concentrate on required words and then in-

serted filtered text features into the coarse network. Un-
like (Zhang et al., 2020c), they directly reconstructed
text descriptions from inpainted images to guarantee
multi-modal semantic alignment. To better preserve the
non-defective regions during the text guidance, Ni et al.
(2023) proposed a defect-free VQGAN to control recep-
tive spreading and a sequence-to-sequence module to
enable visual-language learning from multiple different
perspectives, including text descriptions, low-level pix-
els, and high-level tokens. Recent methods are based on
diffusion models.Shukla et al. (2023) focused on how to
generate a high-quality text prompt to guide a text-
to-image model-based inpainting network by analyz-
ing inter-object relationships. They first constructed a

scene graph based on object detector outputs and ex-

panded it via a graph convolution network to obtain
the features of the corrupted node. Finally, the gener-

ated text prompt and masked image were fed to the
diffusion model to obtain the inpainted result. Wang
et al. (2023) found that object masks would force the
inpainted images to rely more on text descriptions in-

stead of the random mask. Then, they proposed Imagen
Editor fine-tuned from Imagen (Saharia et al., 2022b)
with a new convolutional layer and designed an object

masking strategy for better training. To facilitate the
systematic evaluation of text-guided image inpainting,
they established a benchmark called EditBench.

2.4 Inpainting Mask

In the development of image inpainting techniques, var-
ious artificial masks have been introduced. These masks
can be roughly divided into two categories: regular masks
and irregular masks. Fig. 6 summarizes these masks,
where white pixels indicate missing regions.

Regular masks. A square hole that blocks the cen-
ter area or random location are generally easier to con-
struct. Lugmayr et al. (2022) introduced more regular
masks, including Super-Resolution 2× (reserving pixels
with a stride of 2), Alternating lines (removing every
second row), Expand (leaving a small center crop of the
input image), and Half (masking the half of the input

image).
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Irregular masks. Letter masks ((Bertalmio et al.,
2000; Bian et al., 2022)) and object-shaped masks ((Cri-
minisi et al., 2004; Yi et al., 2020)) are particularly de-
signed for specific tasks, for example, caption removal
and object removal. Liu et al. (2018) introduced free-
form masks, where the former collected random streaks
and arbitrary holes from the results of the occlusion/dis-
occlusion mask estimation method. The irregular masks
shared by (Liu et al., 2018) are very common in the
existing inpainting methods. Suvorov et al. (2022) fur-
ther split free-form masks into narrow masks, large wide
masks, and large box masks, where two types of large
masks are generated via an aggressive mask method
sampling polygonal chains with a high random width
and rectangles of random aspect ratios, respectively.

2.5 Loss Functions

For image inpainting, the loss functions affect features
of different sizes. At the lowest level, a pixel reconstruc-

tion loss aims to recover the exact pixel values. We
further discuss the total-variational (TV) loss (Rudin
et al., 1992), feature consistency loss, the perceptual
loss (Johnson et al., 2016), style loss (Gatys et al.,

2016), and adversarial loss (Goodfellow et al., 2014).
As input, an inpainting network accepts an input

image Iin and a binary mask M describing the missing

regions (where 0 means the valid pixel and 1 means the
missing pixel). The output of the network is a complete
image Iout. The loss functions are formulated as follows.

Pixel-wise reconstruction loss. In the literature,
the pixel-wise reconstruction loss often has two types:
ℓ1 loss (Eq. (1)) and weighted ℓ1 loss (Eq. (3)). The key
point is how the valid and unknown regions differ in the

loss function. The detailed formulations are as follows,

Lwpr = ||(Igt − Iout)||1. (1)

where Igt is the ground-truth complete image.

Lvalid =
1

sum(1−M)
||(Igt − Iout)⊙ (1−M)||1,

Lhole =
1

sum(M)
||(Igt − Iout)⊙M||1,

(2)

where ⊙ is the element-wise product operation, and
sum(M) is the number of non-zero elements in M.
Then the weighted ℓ1 loss is formulated as

Lpr = Lvalid + α · Lhole, (3)

where α is the balancing factor. It is well known that
the ℓ1 loss can capture the low-frequency components,

whereas it struggles to restore the high-frequency com-
ponents (Isola et al., 2017; Ledig et al., 2017).

Total-variation loss. Total-variation loss can be
applied to ameliorate the potential checkerboard arti-
facts introduced by the perceptual loss. The formula-
tion is:

Ltv = ||Imer(i, j + 1)− Imer(i, j)||1
+||Imer(i+ 1, j)− Imer(i, j)||1.

(4)

where Imer = Iout ⊙M+ Igt ⊙ (1−M) is the merged
(completed) image.

Feature consistency loss. This loss constrains ex-
tracted feature maps of the prediction with guidance
from ground truth images:

Lfc =
∑
y∈Ω

||Φm(Iin)y − Φn(Igt)y||22. (5)

where Ω is the missing regions, Φm(·) is the feature
map of the selected layer in the inpainting network,
and Φn(·) is the feature map of the corresponding layer

in the inpainting network or pre-trained VGG models.
Φm(·) and Φn(·) must have the same shape.

Perceptual loss. The perceptual loss is first pro-
posed in style transfer and super-resolution tasks. This
loss measures the semantic/content difference between

inpainted and ground-truth images, and thus encour-
ages the inpainting generator to restore the semantics
of missing regions. The perceptual loss is computed in

high-level feature representations and is formulated as:

Lper =
∑
i

||Ψi(Iout)−Ψi(Igt)||1+||Ψi(Imer)−Ψi(Igt)||1,

(6)

where Ψi(∗) is the feature map of i-th layer in the VGG-

16/19 network (Simonyan and Zisserman, 2014) pre-
trained on ImageNet (Deng et al., 2009). Instead of us-
ing the common VGG network, Suvorov et al. (2022)
suggested using a base network with a fast-growing re-
ceptive field for large-mask inpainting and utilized the
pre-trained segmentation network (ResNet50 with di-
lated convolutions (Zhou et al., 2018)) to compute the
so-called high receptive field perceptual loss. Note that,
some works used 2-norm in Eq. (6) to compute percep-
tual loss.

Style loss. Similar to the perceptual loss, the style
loss also depends on higher-level features extracted from
a pre-trained network. This loss is applied to penal-
ize the style difference between inpainted and ground-
truth images, e.g., texture details and common pat-

terns. Mathematically, the style loss measures the sim-
ilarities of Gram matrices of image features, instead of
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Fig. 7: Some examples of image inpainting datasets.

the feature reconstruction in the perceptual loss. The
detailed formulation can be written,

Lsty =
∑
i

||Φi(Iout)−Φi(Igt)||1+||Φi(Imer)−Φi(Igt)||1,

(7)

where Φi(·) = Ψi(·)Ψi(·)T is the Gram matrix (Gatys
et al., 2016).

Besides using Gram matrices to model the style in-

formation, the mean and standard deviation of image
features are commonly used in style transfer (Huang
and Belongie, 2017; Deng et al., 2020). The formula-
tion is written as,

Lsty mean =
∑
i

||µ(Ψi(Iout))− µ(Ψi(Igt))||2

+||µ(Ψi(Imer))− µ(Ψi(Igt))||2,

Lsty std =
∑
i

||σ(Ψi(Iout))− σ(Ψi(Igt))||2

+||σ(Ψi(Imer))− σ(Ψi(Igt))||2,
Lsty meanstd = Lsty mean + Lsty std,

(8)

where µ(∗), σ(∗) are the mean and standard devia-
tion, computed over spatial dimensions independently
for each sample and each channel.

Adversarial loss. GANs (Goodfellow et al., 2014)
are widely used in many image generation tasks. They
employ an adversarial loss to force the output distribu-
tion to be close to the “real” distribution. The adver-
sarial loss can counteract blurry results and enhance

the visual realism of the output image. Therefore, it
is often applied in GAN-based inpainting networks. To
compute the adversarial loss, a discriminator network
(D) is necessary, which interacts with the generator net-
work (G). The hinge version (Lim and Ye, 2017) of the

adversarial loss can be formulated as:

LD = EI∼pdata(I)

[
max(0, 1−D(Igt))

]
+EImer∼pImer (Imer)

[
max(0, 1 +D(Imer))

]
,

(9)

where D(Igt) and D(Imer) are the logits output from
discriminator D. The objective function for generator
G can be denoted as:

LG = −EImer∼pImer (Imer)

[
D(Imer)

]
. (10)

Except for the above hinge version, other types of ad-
versarial losses are also adopted: GAN (Goodfellow et al.,

2014), WGAN (Arjovsky et al., 2017), LSGAN (Mao
et al., 2017), etc.

2.6 Datasets

In the literature, there are six prevalent and public
datasets for evaluating image inpainting. These datasets
cover various types of images, including faces (CelebA
and CelebA-HQ), real-world encountered scenes (Places2),
street scenes (Paris), texture (DTD), and objects (Im-
ageNet). Several examples are shown in Fig. 7. The de-
tails of the datasets are described below.

– CelebA dataset (Liu et al., 2015): A large-scale face
attribute dataset that contains 10,177 identities, each
of which has about 20 images. In total, CelebA has
202,599 face images, each with 40 attribute annota-
tions.

– CelebA-HQ dataset (Karras et al., 2018): The high-
quality version of CelebA (Liu et al., 2015) with
JPEG artifacts removal, super-resolution operation,

and cropping, etc. This dataset consists of 30,000
face images.
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– Places2 dataset (Zhou et al., 2017): A large-scale
scene recognition dataset. Places365-Standard has
365 scene categories. The training set has 1,803,460
images and the validation set contains 18,250 im-
ages.

– Paris StreetView dataset (Doersch et al., 2012): This
dataset consists of street-level imagery. It contains
14,900 images for training and 100 images for test-
ing.

– DTD dataset (Cimpoi et al., 2014): A describable
texture dataset consisting of 5,640 images. Accord-
ing to human perception, these images are divided
into 47 categories with 120 images per category.

– ImageNet dataset (Deng et al., 2009): A large-scale
benchmark for object category classification. There
are about 1.2 million training images and 50 thou-
sand validation images.

2.7 Evaluation Protocol

The evaluation metrics can be classified into two cat-
egories: pixel-aware metrics and (human) perception-
aware metrics. The former focus on the precision of

reconstructed pixels, including ℓ1 error, ℓ2 error, and
PSNR (peak signal-to-noise ratio), SSIM (the struc-
tural similarity index) (Wang et al., 2004), and MS-

SSIM (multi-scale SSIM) (Wang et al., 2003). The latter
pay more attention to the visual perception quality, in-
cluding FID (Fréchet inception distance) (Heusel et al.,

2017), LPIPS (learned perceptual image patch similar-
ity) (Zhang et al., 2018b), P/U-IDS (paired/unpaired
inception discriminative score) (Zhao et al., 2021), and
user study results. The detailed descriptions are given
in the following.

– ℓ1 error: The mean absolute differences between the
complete image (Ic) and the ground-truth image
(Ig).

– ℓ2 error: The mean squared differences between the
complete image and the ground-truth image.

– PSNR: It is mainly used to measure the quality of
reconstruction of the complete image. Its formula-

tion is PSNR = 20 · log10(255) − 10 · log10(MSE),
where MSE is the mean squared error between the
complete image and the ground-truth image.

– SSIM: Instead of estimating absolute errors, SSIM
measures the similarity in structural information by
incorporating luminance masking and contrast mask-

ing. It is written as SSIM =
(2µIcµIg+c1)(2σIcIg+c2)

(µ2
Ic
+µ2

Ig
+c1)(σ2

Ic
+σ2

Ig
+c2)

,

where µ and σ refer to the average and the variance,
respectively; and c1 = 0.012 and c2 = 0.032 are two
variables to stabilize the division.

– MS-SSIM: Dosselmann and Yang (2011) illustrated
that SSIM is very close to the windowed mean squared
error and Wang et al. (2003) highlighted the single-
scale nature of SSIM as a drawback. As an alterna-
tive, MS-SSIM embraces more flexibility for image
quality assessment. To compute the MS-SSIM, two
input images are iteratively processed with low-pass
filters and downsampled with a stride of 2 (in to-
tal, five scales). Then, the contrast comparison and
structure comparison are computed at each scale
and the luminance comparison is calculated at the
last scale. These measurements are combined with
appropriate weights (Wang et al., 2003).

– FID: The Fréchet inception distance compares two
sets of images. It computes a Gaussian with mean
and covariance (m,C) and a Gaussian (mg,Cg)
from deep features of the set of completed images
and the set of ground-truth images. Specifically, FID
is defined as FID = ∥m − mg∥22 + Tr(C + Cg −
2(CCg)

1
2 ).

– LPIPS: The distance of multi-layer deep features
of complete and ground-truth images. Let Fc,Fg ∈
RHl×Wl×Cl denote the channel-wise normalized fea-
tures in the l-th layer, the LPIPS is given by LPIPS =∑

l
1

HlWl

∑
h,w∥Wl⊙(Fl

chw−Fl
ghw

)∥22, where Wl ∈
RCl is the channel weight vector.

– P/U-IDS: The linear separability of complete and
ground-truth images in a pre-trained feature space.
Let ϕ(·) denote the Inception v3 model mapping

the image to the 2048D feature space, f(·) be the
decision function of the SVM, the P-IDS is formu-
lated as P-IDS = Pr{f(ϕ(Ic)) > f(ϕ(Ig)}. Due to

the unpaired nature, U-IDS is obtained by directly
calculating the misclassification rate.

– User Study: FID, LPIPS, and P/U-IDS cannot be
able to comprehensively evaluate the visual quality

of complete images, therefore, a user study is often
conducted to complement the above metrics. User
studies typically let a human chooses a preferred
image among two (or multiple) images generated
from two (or multiple) competitors. Based on the
collected votes, the preference ratio is calculated for

comparison.

2.8 Performance Evaluation

2.8.1 Representative Image Inpainting Methods

We qualitatively and quantitatively compare some rep-
resentative image inpainting methods: RFR (Li et al.,
2020c), MADF (Zhu et al., 2021), DSI (Peng et al.,
2021), CR-Fill (Zeng et al., 2021b), CoModGAN (Zhao
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Table 2: Quantitative comparison of several representative image inpainting methods on CelebA-HQ and Places2.
‡ Higher is better. † Lower is better. From M1 to M6, the mask ratios are 1%-10%, 10%-20%, 20%-30%, 30%-40%,
40%-50%, and 50%-60%, respectively. Because of the heavy inference time, we do not show the results of RePaint
for M1, M2, M4, and M6.

Dataset CelebA-HQ Places2
Mask M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

ℓ 1
(%

)
†

RFR 1.59 2.47 3.58 4.90 6.44 9.47 0.83 2.20 3.93 5.83 7.96 11.37
MADF 0.47 1.30 2.40 3.72 5.26 8.43 0.80 2.18 3.96 5.91 8.10 11.68
DSI 0.60 1.65 3.08 4.80 6.83 11.11 0.88 2.42 4.48 6.75 9.32 13.82

CR-Fill 0.79 2.15 3.95 6.01 8.33 13.18 0.78 2.17 4.02 6.11 8.46 12.43
CoModGAN 0.48 1.38 2.66 4.28 6.20 10.53 0.72 2.05 3.83 5.89 8.27 12.58

LGNet 0.46 1.28 2.38 3.72 5.27 8.38 0.68 1.89 3.51 5.33 7.41 10.86
MAT 0.83 1.74 3.00 4.52 6.30 9.98 1.07 2.53 4.48 6.69 9.20 13.70

RePaint - - 3.37 - 7.47 - - - 4.96 - 10.01 15.27

P
S
N
R

‡

RFR 36.39 31.87 29.07 26.87 25.09 22.51 35.74 30.24 27.24 25.13 23.48 21.33
MADF 39.68 33.77 30.42 27.95 25.99 23.07 36.17 30.37 27.17 25.00 23.31 21.10
DSI 37.68 31.74 28.39 25.88 23.91 20.87 35.40 29.47 26.15 23.91 22.19 19.75

CR-Fill 35.67 29.87 26.60 24.29 22.53 19.70 36.35 30.32 26.96 24.63 22.85 20.50
CoModGAN 39.56 33.15 29.41 26.62 24.49 21.16 37.00 30.82 27.35 24.92 23.05 20.43

LGNet 40.04 33.99 30.54 27.99 26.01 23.12 37.62 31.61 28.18 25.84 24.05 21.69
MAT 38.44 32.62 29.21 26.70 24.72 21.78 35.66 29.76 26.41 24.09 22.30 19.81

RePaint - - 28.38 - 23.16 - - - 26.04 - 21.72 18.99

S
S
IM

‡

RFR 0.991 0.976 0.957 0.932 0.902 0.834 0.983 0.952 0.911 0.862 0.805 0.699
MADF 0.995 0.984 0.967 0.945 0.917 0.848 0.984 0.953 0.910 0.859 0.800 0.690
DSI 0.992 0.976 0.951 0.918 0.877 0.778 0.982 0.945 0.892 0.832 0.763 0.636

CR-Fill 0.988 0.965 0.931 0.890 0.842 0.729 0.985 0.954 0.909 0.855 0.794 0.675
CoModGAN 0.994 0.981 0.960 0.929 0.891 0.792 0.987 0.957 0.914 0.860 0.796 0.671

LGNet 0.995 0.985 0.968 0.945 0.917 0.849 0.988 0.963 0.925 0.878 0.823 0.714
MAT 0.993 0.980 0.959 0.931 0.897 0.814 0.983 0.948 0.898 0.839 0.772 0.645

RePaint - - 0.952 - 0.867 - - - 0.892 - 0.750 0.606

M
S
-S
S
IM

‡

RFR 0.992 0.976 0.956 0.933 0.900 0.830 0.986 0.960 0.924 0.880 0.828 0.731
MADF 0.994 0.983 0.966 0.942 0.913 0.846 0.987 0.961 0.923 0.877 0.824 0.722
DSI 0.992 0.976 0.952 0.919 0.878 0.784 0.984 0.952 0.905 0.850 0.785 0.664

CR-Fill 0.987 0.963 0.928 0.887 0.839 0.732 0.987 0.960 0.920 0.872 0.814 0.704
CoModGAN 0.994 0.980 0.958 0.926 0.888 0.793 0.988 0.961 0.921 0.870 0.810 0.692

LGNet 0.995 0.984 0.968 0.945 0.917 0.851 0.990 0.968 0.935 0.894 0.844 0.744
MAT 0.994 0.980 0.960 0.932 0.898 0.818 0.986 0.957 0.913 0.859 0.796 0.676

RePaint - - 0.953 - 0.870 - - - 0.903 - 0.771 0.633

F
ID

†

RFR 0.86 1.68 2.67 3.77 5.21 7.60 2.62 5.99 9.47 12.90 16.62 22.13
MADF 0.52 1.55 3.28 5.43 8.35 13.54 2.15 5.58 9.20 13.08 17.36 24.42
DSI 0.59 1.58 3.01 4.50 6.51 9.76 2.51 6.52 11.35 15.99 21.75 29.38

CR-Fill 1.06 2.86 5.26 7.79 11.23 19.52 2.37 6.24 10.54 15.17 20.36 26.43
CoModGAN 0.44 1.25 2.45 3.65 5.03 6.89 2.11 5.63 9.58 13.65 17.68 22.58

LGNet 0.39 1.06 2.08 3.16 4.61 7.07 1.97 5.25 8.90 13.02 17.60 25.99
MAT 0.41 1.13 2.05 2.96 4.05 5.43 2.13 5.47 9.26 13.00 16.62 21.88

RePaint - - 2.14 - 4.24 - - - 8.85 - 15.90 21.58

L
P
IP

S
†

RFR 0.015 0.028 0.042 0.060 0.081 0.118 0.021 0.047 0.074 0.106 0.142 0.201
MADF 0.009 0.025 0.048 0.077 0.109 0.168 0.014 0.038 0.068 0.102 0.141 0.209
DSI 0.010 0.026 0.048 0.074 0.104 0.160 0.018 0.047 0.085 0.125 0.169 0.242

CR-Fill 0.017 0.043 0.074 0.107 0.143 0.212 0.016 0.042 0.076 0.114 0.156 0.226
CoModGAN 0.008 0.022 0.041 0.065 0.092 0.143 0.016 0.044 0.080 0.121 0.164 0.236

LGNet 0.006 0.017 0.031 0.048 0.069 0.108 0.014 0.035 0.064 0.096 0.132 0.198
MAT 0.007 0.019 0.035 0.054 0.077 0.120 0.014 0.040 0.073 0.111 0.152 0.224

RePaint - - 0.038 - 0.093 - - - 0.077 - 0.167 0.259
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Fig. 8: Qualitative comparison of representative image inpainting methods on CelebA-HQ (the first three rows)
and Places2 (the last four rows).

Table 3: Model computational complexity statistics.

Model #Parameter GPU Memory Infer. time
RFR 30.59 M 1.23 G 28.95 ms

MADF 85.14 M 2.42 G 15.59 ms
DSI 70.32 M 6.54 G 40.20 s

CR-Fill 4.10 M 0.96 G 9.18 ms
CoModGAN 79.80 M 1.71 G 42.24 ms

LGNet 115.00 M 1.52 G 13.59 ms
MAT 59.78 M 1.69 G 78.35 ms

RePaint 552.81 M 4.14 G 6 min 30 s

et al., 2021), LGNet (Quan et al., 2022), MAT (Li
et al., 2022b), RePaint (Lugmayr et al., 2022). The test
mask is from (Liu et al., 2018). Specifically, RFR fol-
lows a progressive inpainting strategy, MADF adopts a
mask-aware design, DSI generates stochastic structures

with hierarchical vq-vae, CR-Fill designs an attention-
free generator, CoModGAN embeds the known content
of corrupted images into style vectors of styleGAN2,
LGNet introduces local and global refinement networks
with different receptive fields, MAT designs a mask-
aware transformer architecture, and RePaint utilizes a
pre-trained unconditional diffusion model.

Table 2 reports the quantitative results of these ad-
vanced image inpainting methods on CelebA-HQ and
Places2 datasets. In this experiment, we use the irreg-
ular masks shared by (Liu et al., 2018) for the evalu-
ation. From this table, we can find that MS-SSIM is
very close to SSIM in the CelebA-HQ dataset; MS-
SSIM is consistently higher than SSIM in the Places2

dataset and this phenomenon is more apparent for large
masks. The reason may be that face images are rel-
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Table 4: Quantitative comparison of different loss functions on CelebA-HQ (“C”) and Paris StreetView (“P”). ‡
Higher is better. † Lower is better. “16” refers to Eq. (3) with α = 6, and the remaining loss settings both include
“16” (We omit it for simplicity). “percept” refers to Eq. (6) based on pretrained VGG16; “resnetpl” refers to
Eq. (6) based on the pre-trained segmentation network ResNet50, which is proposed by (Suvorov et al., 2022).;
“style” refers to Eq. (7); “stylemeanstd” refers to Eq. (8); “percept style” refers to Eq. (6) plus Eq. (7); “lsgan”
refers to Eq. (9) and (10). Different percentage numbers in the first row refer to the hole ratios, where a large
number implies large missing regions. Following the common setting, the test mask is from (Liu et al., 2018).

Mask 1%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60%
Dataset C P C P C P C P C P C P

ℓ 1
(%

)
†

16 0.46 0.57 1.26 1.53 2.34 2.81 3.63 4.25 5.14 5.93 8.37 9.07
percept 0.45 0.57 1.24 1.53 2.30 2.81 3.58 4.26 5.08 5.95 8.33 9.11
resnetpl 0.45 0.59 1.25 1.58 2.32 2.88 3.60 4.35 5.10 6.06 8.35 9.21
style 0.48 0.59 1.33 1.60 2.47 2.97 3.85 4.53 5.45 6.37 8.86 9.78

stylemeanstd 0.46 0.59 1.27 1.60 2.39 2.96 3.75 4.51 5.35 6.34 8.80 9.75
percept style 0.47 0.60 1.30 1.63 2.43 3.00 3.79 4.58 5.40 6.42 8.83 9.84

lsgan 0.47 0.59 1.30 1.61 2.42 2.97 3.76 4.52 5.33 6.34 8.67 9.72

P
S
N
R

‡

16 40.03 38.74 34.13 33.17 30.76 29.92 28.27 27.67 26.29 25.88 23.23 23.28
percept 40.14 38.77 34.19 33.17 30.81 29.91 28.31 27.65 26.33 25.85 23.23 23.25
resnetpl 40.12 38.56 34.18 33.03 30.80 29.83 28.29 27.61 26.31 25.83 23.23 23.26
style 39.63 38.36 33.65 32.71 30.24 29.37 27.72 27.07 25.74 25.22 22.71 22.62

stylemeanstd 39.91 38.38 33.89 32.81 30.42 29.49 27.85 27.20 25.83 25.35 22.72 22.70
percept style 39.78 38.20 33.74 32.60 30.31 29.30 27.76 27.01 25.76 25.20 22.68 22.58

lsgan 39.71 38.40 33.73 32.78 30.39 29.50 27.91 27.18 25.96 25.35 22.95 22.72

S
S
IM

‡

16 0.995 0.991 0.985 0.973 0.969 0.946 0.948 0.911 0.921 0.867 0.847 0.767
percept 0.995 0.991 0.985 0.973 0.970 0.946 0.949 0.911 0.921 0.866 0.847 0.765
resnetpl 0.995 0.991 0.985 0.972 0.970 0.945 0.948 0.909 0.921 0.865 0.848 0.764
style 0.995 0.991 0.983 0.971 0.966 0.940 0.943 0.902 0.913 0.853 0.834 0.746

stylemeanstd 0.995 0.991 0.984 0.971 0.968 0.941 0.944 0.903 0.914 0.854 0.835 0.747
percept style 0.995 0.990 0.984 0.970 0.967 0.940 0.943 0.901 0.913 0.852 0.834 0.745

lsgan 0.995 0.991 0.984 0.971 0.967 0.941 0.944 0.903 0.915 0.854 0.839 0.746

F
ID

†

16 0.56 4.74 1.57 13.74 3.31 26.55 5.38 40.79 8.37 57.49 15.18 86.51
percept 0.53 4.64 1.51 13.41 3.20 26.13 5.22 40.35 8.18 57.22 14.63 88.10
resnetpl 0.52 4.62 1.47 13.23 3.11 25.60 5.13 39.08 7.99 54.75 13.81 83.93
style 0.42 3.91 1.13 10.67 2.25 19.65 3.38 28.87 5.00 39.09 7.90 57.00

stylemeanstd 0.44 4.21 1.21 11.42 2.38 20.54 3.65 29.68 5.36 39.59 8.55 56.38
percept style 0.40 3.98 1.13 10.91 2.26 19.76 3.42 29.12 5.07 39.28 7.87 57.07

lsgan 0.54 4.26 1.57 11.72 3.34 21.54 5.57 31.21 8.85 41.80 16.03 60.01

L
P
IP

S
†

16 0.011 0.016 0.032 0.048 0.063 0.091 0.102 0.142 0.144 0.197 0.222 0.298
percept 0.010 0.015 0.029 0.045 0.057 0.086 0.092 0.134 0.129 0.185 0.200 0.279
resnetpl 0.009 0.015 0.027 0.044 0.052 0.083 0.083 0.126 0.116 0.174 0.174 0.259
style 0.007 0.011 0.018 0.031 0.033 0.056 0.052 0.086 0.073 0.120 0.117 0.186

stylemeanstd 0.008 0.013 0.021 0.035 0.037 0.062 0.055 0.092 0.076 0.125 0.119 0.189
percept style 0.006 0.011 0.018 0.032 0.033 0.057 0.052 0.087 0.074 0.122 0.118 0.188

lsgan 0.009 0.013 0.028 0.036 0.054 0.066 0.086 0.098 0.123 0.135 0.196 0.208

atively regular and uniform compared to the natural

scene images in Places2, and thus the latter is more
sensitive to structural similarity with different scales.
Among these methods, MAT and RePaint have rela-
tively superior FID, especially for large masks (> 30%),
while CoModGAN and LGNet perform better in PSNR.
For DSI, the inpainting performance on CelebA-HQ is
slightly better than that on Places2, and the possible
reason is that the structure of face images is easier to
model than diverse natural scene images. CR-Fill has
limited inpainting performance.

Fig. 8 shows the visual results of some represen-

tative image inpainting methods on CelebA-HQ and
Places2 datasets. MADF adopts a mask-aware design,
which can predict reasonable structures (the second and
third rows), but has limited ability for detail restora-
tion. By contrast, MAT has better inpainting perfor-
mance with mask-aware transformer blocks. Through
introducing local and global refinement with different
receptive fields, LGNet can perceive local details (the
black stroke in the first row) and global structure (the
second row). For large missing regions, RFR can re-

cover the helicopter rotor blade (the fourth row) and
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Fig. 9: Qualitative comparison of different loss functions on CelebA-HQ (the first two rows) and Paris StreetView
(the last two rows). “StyleMS” refers to “stylemeanstd”; “Per Style” refers to “Percept style”.

waterfall (the fifth row) with progressive inpainting.
With the help of the generative capability of the uncon-

ditional modulated model (StyleGAN2), CoModGAN
demonstrates relatively good inpainting performance
(the fourth and sixth rows). DSI can perceive the struc-
ture with hierarchical VQ-VAE (the third and fourth

rows). Based on the powerful generation ability of the
diffusion model, RePaint can correctly infer the missing
background (the sixth row) and the human body (the

seventh row). Interestingly, it may have an incorrect se-
mantic prediction (a woman’s head in the waterfall of
the fifth row). Due to the implicit attention mechanism
and simple network, CR-Fill achieves comparatively in-
ferior inpainted results, which is also consistent with the
quantitative comparisons as shown in Table 2.

In addition, we evaluate the computational com-
plexity of the representative inpainting methods in terms
of the number of parameters, GPUmemory of single im-
age inference, and inference time on a GPU (the time of
a forward pass through the networks. The statistical re-
sults are shown in Table 3. CR-Fill implicitly learns the

patch-borrowing behavior without an attention layer,
its model is the smallest and thus needs less GPU mem-
ory and running time. Because RePaint is based on a
diffusion model, it has the largest number of parame-
ters and a very long inference time. The GPU memory
and inference time of DSI are also very high. LGNet
follows a coarse-to-fine framework with local and global
refinement, therefore, the number of parameters is high.

The running time of MAT and CoModGAN is relatively
high because the former conducts many attention com-
putations and the latter has multiple style modulations

with progressive growing. RFR and MADF are in the
middle.

2.8.2 Loss Functions

As summarized in Sec. 2.5, many loss functions have
been proposed for image inpainting. In this part, we
evaluate the effect of each loss term. We train an in-
painting network with different loss settings on the CelebA-
HQ and Paris StreetView datasets. This network con-
sists of two downsampling layers, 11 ResNet residual
blocks with dilation, and two upsampling layers. The
corresponding numerical results are reported in Table 4.
In the case of masks at 1%-10%, the SSIM values of dif-
ferent loss settings are (almost) the same for CelebA-

HQ and Paris StreetView datasets. The reason is that
different loss settings only have a slight impact on the
inpainting of very small missing regions. We can see
that pixel-wise reconstruction loss (“16”) provides the
baseline performance. After adding the perceptual loss
(“percept”), FID and LPIPS are improved. Compared
with “percept”, “resnetpl” achieves slightly better re-
sults, especially for the large mask. The style loss can
remarkably decrease the FID and LPIPS at the ex-
pense of PSNR and SSIM. In other words, there ex-

ists a trade-off between pixel-wise reconstruction loss
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Fig. 10: Two representative examples of object removal.

and style loss, where the former focuses on low-level
pixel recovery, and the latter emphasizes visual qual-
ity. A similar finding is reported and studied in (Blau
and Michaeli, 2018). In addition, combining the per-

ceptual loss with style loss (“percept style”) has a very
slight effect on the results compared to only style loss
(“style”). The style loss based on Gram matrix (“style”)

and style loss based on mean and standard deviation
(“stylemeanstd”) have comparable results. Comparing
with adversarial loss (“lsgan”), style loss (“style”) ob-
tain significantly lower FID and LPIPS.

Fig. 9 illustrates the corresponding qualitative com-

parison. “16” fills the missing regions with smooth struc-
tures and textures. After introducing the content loss,
this phenomenon is slightly improved, for example, the
nose and mouth of the first row are better recovered
in column “Percept”. Compared with “Percept”, the
inpainted results of “Resnetpl” have slightly improved
visual quality, which is attributed to the perceptual loss

computation with higher receptive field (Suvorov et al.,
2022). We can find that the results of “Style” are sig-
nificantly superior to the previous three columns, es-
pecially for the restoration of texture details. This is
consistent with the numerical results in Table 4. For
three settings with style loss, i.e., “Style”, “StyleMS”,
and “Per Style”, “Style” and “Per Style” are on par,
“StyleMS” is slightly worse. The performance of “LS-
Gan” is in between “Percept” and “Style”.

2.9 Inpainting-based Applications

Image inpainting can be used in many real-world appli-
cations, such as object removal, text editing, old photo
restoration, image compression, text-guided image edit-
ing, etc.

(a) Text erasing

(b) Text replacement

Fig. 11: Representative samples of text editing.

2.9.1 Object Removal

Almost all image editing tools include the function of
object removal, which is directly accomplished with im-
age inpainting. To illustrate the capability of several

current inpainting methods on the object removal ap-
plication, we apply the respective trained models to re-
move objects from selected real-world images with dif-

ferent scenes, and the corresponding results are shown
in Fig. 10. The first row is generated by CNN-based
method (Suvorov et al., 2022) and the second one is in-

painted by a transformer-based method (Zheng et al.,
2022a). These two methods can achieve visually re-
alistic results, successfully removing the objects high-
lighted with shadow markers.

2.9.2 Text Editing

On social media sites, users often share their pictures

and also want to hide their personal information for
privacy. For real-time text translation applications in
smartphones, the original content needs to be replaced
with the translated version. These text editing-related
tasks can be solved via inpainting techniques. Fig. 11(a)
shows the results of text removal with the method pro-
posed by (Quan et al., 2022), and Fig. 11(b) illustrates

two samples of text replacement from (Wu et al., 2019).
These results have a pleasing visual quality.

2.9.3 Old Photo Restoration

Photos are helpful to record important moments. Un-
fortunately, some photos are damaged over time, result-
ing in various missing regions. Image inpainting can be
used to recover these incomplete photos automatically.
It is difficult to collect paired training data for this task,
therefore, we synthesize old photos using the Pascal
VOC dataset Everingham et al. (2015) inspired by Wan
et al. (2020). Specifically, we collect some paper and
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Fig. 12: Several representative examples of old photo
restoration.

scratch texture images to simulate the realistic defects
in the old photos. To blend the above texture images
with the VOC images, we randomly choose a mode from
three candidates (screen, lighten-only, and layer addi-
tion) with a random opacity. In addition, some opera-
tions, e.g., random flipping, random position, rescaling,
cropping, etc, are also used for augmenting the diversity

of texture images. To this end, the paired samples of the
original VOC images and the corresponding blended re-
sults are used for training the inpainting network (Quan

et al., 2022). Fig. 12 shows several examples of old photo
restoration, where the inpainting method restores the
original appearance of old photos.

2.9.4 Image Compression

Image compression is a fundamental image processing
technique to reduce the cost of storage or transmission
of digital images. This technique mainly consists of two
stages: compression and reconstruction. The former re-
duces the data size to obtain a sparse image representa-

tion and the latter reconstructs the original image. Dif-
ferent from waveform-based methods, Carlsson (1988)
proposed a sketch-based method to obtain a sparse rep-
resentation and reconstructed images via an interpo-
lation process. Galić et al. (2008) introduced partial
differential equation (PDE)-based inpainting to image
compression, where image coding and decoding both

are based on edge-enhancing anisotropic diffusion. Re-
cently, some researchers (Baluja et al., 2019; Dai et al.,
2020; Schrader et al., 2023) applied deep learning meth-
ods to generate the sampling mask and reconstruct the
image with an inpainting network. Fig. 13 shows several
examples of image compression with inpainting, where
the reconstructed images have good quality based on
adaptive sparse sampling with inpainting.

Fig. 13: Two representative examples of image compres-
sion with inpainting. From left to right: input image,
sampling mask, sampled image, and reconstructed im-
age. Images come from (Dai et al., 2020).

Fig. 14: Selected examples of text-based image editing.
Each group includes the input image with mask (red

transparent) and text prompts and edited results. Im-
ages come from (Xie et al., 2023).

2.9.5 Text-guided image editing

Image inpainting is a basic processing tool for image
editing. Recent generative models based on probabilis-
tic diffusion have the powerful capability of text-to-
image generation, which provides the potential for text-

guided image editing with diffusion model-based im-
age inpainting approaches. For example, diffusion-based
SmartBrush (Xie et al., 2023) edited images with the
guidance of text and shape. Fig. 14 illustrates several
samples generated by SmartBrush. The first row adds
new objects and the second row replaces original ob-
jects with new contents. We can see that the edited
results have high visual realism and are consistent with
text prompts.
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3 Video Inpainting

3.1 Method

Unlike images, videos have an additional temporal di-
mension which provides extra information about ob-
jects or camera movement. This information helps net-
works to obtain a better understanding of the context
of the video. Therefore, the video inpainting task aims
to ensure both spatial consistency and temporal co-
herence. Existing deep learning-based video inpainting
methods can be roughly divided into four categories: 3D
CNN-based approaches, shift-based approaches, flow-
guided approaches, and attention-based approaches. We
refer the readers to more conventional methods in (Ilan
and Shamir, 2015).

3.1.1 3D CNN-based Approaches

To deal with the temporal dimension, researchers pro-

posed 3D CNN-based approaches, which often combine
temporal restoration and image inpainting. Wang et al.
(2019a) proposed a two-stage pipeline to jointly infer
temporal structure and spatial texture details. The first

sub-network processes the low-resolution videos with a
3D CNN, and the second sub-network completes the
original-resolution video frames with an extended 2D

inpainting network (Iizuka et al., 2017). Inspired by
the gated convolution in image inpainting (Yu et al.,
2019), Chang et al. (2019a) proposed a 3D gated con-
volution and a temporal SN-PatchGAN for free-form

video inpainting. They also integrated the perceptual
loss (Johnson et al., 2016) and style loss (Gatys et al.,
2016) into the training objective. Hu et al. (2020) pro-
posed a two-stage video inpainting network, where they
obtain a coarse inpainting result with a 3D CNN and
then fuse inpainting proposals generated by matching

valid pixels and pixels in coarse inpainting results.

3.1.2 Shift-based Approaches

Considering the high computational cost of 3D con-
volution, Lin et al. (2019) proposed a generic tempo-
ral shift module (TSM) to capture temporal relation-
ships with high efficiency. This technique is extended
for video inpainting. Chang et al. (2019b) developed
a learnable gated TSM, which combines a TSM with
learnable shifting kernels and gated convolution (Yu
et al., 2019). They also equipped the 2D convolution
layers in SN-PatchGAN (Yu et al., 2019) with gated
TSM. However, TSM often leads to blurry content due
to misaligned features. To solve this, Zou et al. (2021)

proposed a spatially-aligned TSM (TSAM), aligning

features to the current frame after shifting features. The
alignment process is based on estimated flow with a va-
lidity mask. Ouyang et al. (2021) applied an internal
learning strategy for video inpainting, which implicitly
learns the information shift from valid regions to un-
known parts in a single video sample. They also de-
signed the gradient regularization term and the anti-
ambiguity loss term for temporal consistency recon-
struction and realistic detail generation. Ke et al. (2021)
presented an occlusion-aware video object inpainting
method. Specifically, they completed the object shape
with a transformer-based network, recovered the flow
within the completed object region under the guidance
of the object contour, and filled missing content with an
occlusion-aware TSM after the flow-guided pixel prop-
agation.

3.1.3 Flow-guided Approaches

Optical flow is a common tool to model the temporal in-
formation in videos, which is also applied to solve video

inpainting. Based on the completed flow, the missing
pixels in the current frame can be filled by propagat-
ing pixels from neighboring frames. Kim et al. (2019b)

modeled the video inpainting task as a multi-to-single
frame inpainting problem and proposed a 3D-2D encoder-
decoder network VINet. This network includes several
flow and mask sub-networks in a progressive manner.

They also introduced the flow and warp loss to further
enforce temporal consistency. Chang et al. (2019c) pro-
posed a three-stage video inpainting framework consist-

ing of a warping network, an inpainting network, and
a refinement network. In the warping network, bilinear
interpolation is used to recover background flow with-

out learning. Then the refinement network selected the
best candidate from two frames completed by warp-
ing and inpainting network to generate the final out-
put. Zhang et al. (2019a) applied internal learning to
infer both frames and flow from input random noise
and used flow generation loss to enhance temporal co-
herence. Xu et al. (2019) proposed a flow-guided com-

pletion framework consisting of three steps. It first fills
the incomplete optical flow with stacked CNN networks,
then propagates pixels from known regions to holes with
inpainted flow guidance, and finally completes unseen
regions with an image inpainting network (Yu et al.,
2019). To reduce the over-smoothing in the boundary
regions during flow completion, they leveraged hard
flow example mining to encourage the network to pro-
duce sharp edges. To solve the same problem, Gao et al.
(2020) explicitly completed motion edges and used them
to guide flow completion. In addition, they introduced
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a non-local flow connection to enable content propaga-
tion from distant frames.

These previous methods cannot guarantee the con-
sistency of flow, and even small errors in the flow may
lead to geometric distortion in the video. Inspired by
this, Lao et al. (2021) transformed the background of a
3D scene to a 2D scene template and learned the map-
ping of the template to the mask in the image. Given
that the complex motion of objects between consecu-
tive frames will increase the difficulty to recover flow,
Zhang et al. (2022b) introduced an inertia prior in flow
completion to align and aggregate flow features. To al-
leviate the spatial incoherence problem, they proposed
an adaptive style fusion network to correct the distribu-
tion in the warped regions with the guidance of feature
distribution in valid regions. Kang et al. (2022) offset
the weaknesses of the error accumulation of a multi-
stage pipeline in flow-based methods by introducing an
error compensation strategy, which iteratively detects
and corrects the inconsistency errors during the flow-

guided pixel propagation.

The above hand-crafted flow-based methods restored
videos with high computation and memory consump-
tion because these processes cannot be accelerated by

GPU. To speed up training and inference, Li et al.
(2022d) proposed an end-to-end framework. They prop-
agated features based on completed flow in low resolu-

tion and used deformable convolution to decrease the
distortion caused by errors in flow. The temporal focal
transformer blocks were stacked to aggregate local and
non-local features.

3.1.4 Attention-based Approaches

The attention mechanism is often applied to model the

contextual information and enlarge the spatial-temporal
window. Oh et al. (2019) recurrently calculated the at-
tention scores between the target and reference frames,
and progressively filled holes of the target frame from
the boundary. Lee et al. (2019) firstly aligned frames by
an affine transformation, and then copied pixels based
on the similarity between the target frame and aligned
reference frames. Woo et al. (2020) proposed a coarse-
to-fine framework for video inpainting. The first stage
roughly recovers the target holes based on the com-
puted homography between the target and reference
frames, and the second stage refines the filled contents
with non-local attention. They also introduced an op-

tical flow estimator to enhance temporal consistency.
Considering the motion of the foreground objects is di-
verse, the choice of reference frames becomes more im-
portant. While other methods take neighboring frames
or frames in a specific distance as reference frames, Li

et al. (2020a) dynamically updated long-term reference
frames after aggregating short-term aligned features.

Instead of a frame-by-frame inpainting strategy, Zeng
et al. (2020a) adopted a “multi-to-multi” mechanism to
fill in the holes in all input frames. Specifically, they pro-
posed a spatial-temporal transformer network (STTN)
to compute attention in both spatial and temporal di-
mensions. Based on STTN (Zeng et al., 2020a), Liu
et al. (2021b) separated feature maps into overlapping
patches, enabling more interactions between neighbor-
ing patches. In addition, they modified the common
transformer block by inserting soft split and soft com-
position modules into the feed-forward network. Chen
et al. (2021) proposed an interactive video inpainting
method to jointly perform object segmentation and video
inpainting with user guidance. For network design, they
introduce a spatial time attention block to update the
target frames’ features with the reference frames’ fea-
tures. Zhang et al. (2022a) designed a flow-guided trans-
former to combine the flow and the attention. They first
utilized the completed flow to propagate pixels from

neighboring frames, and then synthesized the remaining
missing regions with a flow-guided spatial transformer
and a temporal transformer.

These attention-based methods still suffer from blurry

content in high frequency due to mapping videos into
a continuous feature space. By learning a specific code-
book for each video and using subscripts of code to

represent images, Ren et al. (2022) transformed videos
to a discrete latent space. Then a discrete latent trans-
former was applied to infer content in masked regions.

Table 5 summarizes the technical details of existing

video inpainting methods.

3.2 Loss Functions

Video inpainting is very close to image inpainting. There-
fore, many loss functions for training image inpainting
networks are also applied to train video inpainting mod-
els, including reconstruction loss, GAN loss, perceptual
loss, and style loss. To complete the corrupted flow, two
losses are often used:

Flow loss. Similar to the image reconstruction loss,
the flow loss measures the difference between inpainted
flow and its ground-truth version, which is defined as:

Lflow = ||Oi,j ⊙ (Fi,j − F̂i,j)||1, (11)

where F̂i,j is the inpainted optical flow from frame i to
frame j, Fi,j is the ground-truth flow estimated by pre-

trained flow estimation networks, e.g., FlowNet2 (Ilg
et al., 2017) and PWC-Net (Sun et al., 2018a), and Oi,j

denotes the occlusion map obtained by the forward-
backward consistency check.
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Table 5: Summary of video inpainting methods. Like image inpainting, we also split existing video inpainting
approaches into three types according to the number of stages: 1) one-stage framework ( 1 ) usually designs
a generator to recover the missing contents for each frame; 2) two-stage framework ( 2 ) often consists of two
networks for different purposes; and 3) multi-stage framework ( m ) splits video inpainting into multiple steps.

Category Method Stage
Loss details

L1 loss GAN loss Perceptual loss Style loss TV loss Flow loss Warp loss

3
D

C
N
N Wang et al. (2019a) 2 ✓

Chang et al. (2019a) 1 ✓ ✓ ✓ ✓
Hu et al. (2020) 2 ✓ ✓

S
h
if
t

Chang et al. (2019b) 1 ✓ ✓ ✓ ✓
Zou et al. (2021) 1 ✓ ✓ ✓ ✓

Ouyang et al. (2021) 1 ✓
Ke et al. (2021) m ✓ ✓ ✓ ✓

F
lo
w

Kim et al. (2019b) 1 ✓ ✓ ✓
Chang et al. (2019c) m ✓ ✓ ✓
Zhang et al. (2019a) 1 ✓ ✓ ✓ ✓

Xu et al. (2019) m ✓
Gao et al. (2020) m ✓ ✓
Lao et al. (2021) 2 ✓ ✓

Zhang et al. (2022b) m ✓ ✓ ✓ ✓
Li et al. (2022d) 1 ✓ ✓ ✓
Kang et al. (2022) m ✓ ✓ ✓

A
tt
en

ti
o
n

Oh et al. (2019) m ✓ ✓ ✓ ✓
Lee et al. (2019) 2 ✓ ✓ ✓ ✓
Woo et al. (2020) 2 ✓ ✓ ✓ ✓
Li et al. (2020a) 1 ✓ ✓ ✓

Zeng et al. (2020a) 1 ✓ ✓
Liu et al. (2021b) 1 ✓ ✓
Chen et al. (2021) 2 ✓ ✓ ✓

Zhang et al. (2022a) 2 ✓ ✓ ✓ ✓
Ren et al. (2022) 2 ✓ ✓

Table 6: Quantitative comparisons of representative video inpainting methods on YouTube-VOS and DAVIS
dataset. ‡ Higher is better. † Lower is better. *: our results using the method described in STTN (Zeng et al.,

2020a), and numerical differences may be due to different optical flow models during evaluation.

Methods
YouTube-VOS DAVIS

PSNR‡ SSIM‡ VFID† FWE(×10−2)† PSNR‡ SSIM‡ VFID† FWE(×10−2)†
VINet (Kim et al., 2019b) 29.20 0.9434 0.072 0.1490 / - 28.96 0.9411 0.199 0.1785 / -
DFVI (Xu et al., 2019) 29.16 0.9429 0.066 0.1509 / - 28.81 0.9404 0.187 0.1880 / 0.1608*

LGTSM (Chang et al., 2019b) 29.74 0.9504 0.070 0.1859 / - 28.57 0.9409 0.170 0.2566 / 0.1640*
CAP (Lee et al., 2019) 31.58 0.9607 0.071 0.1470 / - 30.28 0.9521 0.182 0.1824 / 0.1533*

FGVC (Gao et al., 2020) 29.68 0.9396 0.064 - / 0.0858* 30.24 0.9444 0.143 - / 0.1530*
STTN (Zeng et al., 2020a) 32.34 0.9655 0.053 0.1451 / 0.0884* 30.67 0.9560 0.149 0.1779 / 0.1449*

FuseFormer (Liu et al., 2021b) 33.16 0.9673 0.051 - / 0.0875* 32.54 0.9700 0.138 - / 0.1336*
FGT (Zhang et al., 2022a) 32.11 0.9598 0.054 - / 0.0860* 32.39 0.9633 0.1095 - / 0.1517*
ISVI (Zhang et al., 2022b) 32.80 0.9611 0.048 - / 0.0856* 33.70 0.967 0.1028 - / 0.1509*
E2FGVI (Li et al., 2022d) 33.50 0.9692 0.046 - / 0.0864* 32.71 0.9700 0.096 - / 0.1383*

Warp loss. This loss encourages image-flow consis-
tency:

Lwarp = ||Ii − Ij(F̂i,j)||1, (12)

where Ij(F̂i,j) refers to the warped result of the frame Ij
using the generated flow F̂i,j through backward warp-
ing.

3.3 Datasets

For video inpainting, three common video datasets, i.e.,
FaceForensics (Rössler et al., 2018), DAVIS (Perazzi
et al., 2016) and YouTube-VOS (Xu et al., 2018a), are
used for training and evaluation.

– FaceForensics: A face forgery detection video dataset
consisting of 1,004 videos. Among them, 854 videos
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Fig. 15: Qualitative comparisons of representative video inpainting methods on YouTube-VOS and DAVIS dataset.
The light blue mask highlights the corrupted regions. The first three columns are random masks and the remaining

two columns are object masks.

are used for training and the rest are used for eval-
uation.

– DAVIS dataset: A densely annotated video segmen-
tation dataset contains 150 videos with challenging
motion-blur and appearance motions. For the data
split, 60 videos are used for training and 90 videos
for testing.

– YouTube-VOS dataset: A large-scale video object
segmentation dataset containing 4,453 video clips
and 94 object categories. The video clips have on
average 150 frames and show various scenes. The
original data split, i.e., 3,471/474/508, is adopted
for experimental comparisons.

3.4 Evaluation Protocol

Video contains many image frames, therefore, the two
most widely-used metrics in image inpainting (i.e., PSNR
and SSIM) are also used for video quality assessment.
In addition, there are two other video-specific metrics
(considering the temporal aspect), i.e., flow warping
error (FWE) Lai et al. (2018) and video-based Fréchet
inception distance (VFID)Wang et al. (2018a). The for-
mer evaluates the temporal stability of inpainted videos
and the latter measures the perceptual realism in the
video setting.

– FWE: The flow warping error between two con-
secutive video frames is calculated as E(It, It+1) =

1∑N
n=1 Mn

t

∑N
n=1 M

n
t ||Int − Înt+1||22, where Mt is a bi-

nary mask indicating non-occluded areas and Ît+1 is
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the warped frame of It+1. The non-occlusion mask
can be estimated by using the method Ruder et al.
(2016). Then, the warping error of a video is defined
as the average error over the entire frames, and the
formulation is E = 1

T−1

∑T−1
t=1 E(It, It+1).

– VFID: A variant of FID for video evaluation. In-
stead of using a pre-trained image recognition net-
work, the spatiotemporal feature map of each video
is extracted via a pre-trained video recognition net-
work, e.g., I3D Carreira and Zisserman (2017). Then,
the VFID is calculated following the same procedure
as the FID.

3.5 Performance Evaluation

In this section, we report the performance evaluation of
representative video inpainting methods.

Table 6 shows the numerical results on YouTube-
VOS and DAVIS datasets. We use the evaluated masks
shared by (Liu et al., 2021b). Early video inpainting
methods based on 3D convolution (e.g., VINet (Kim

et al., 2019b)) and shift (e.g., LGTSM (Chang et al.,
2019b)) have relatively limited inpainting performance.
After introducing optical flow and attention mecha-

nisms, the quality of video inpainting is remarkably im-
proved. DFVI (Xu et al., 2019) generates the baseline
result with flow guidance, and FGVC (Gao et al., 2020)
achieves better performance by completing flow with

sharp edges and propagating information from distant
frames. ISVI (Zhang et al., 2022b) obtains more ex-
act flow completion under the inertia prior, and thus

enhances the inpainting quality. STTN (Zeng et al.,
2020a) and FuseFormer (Liu et al., 2021b) both design
video inpainting frameworks through stacking multiple
transformer blocks with multi-scale attention and dense
patch-wise attention, respectively. FGT (Zhang et al.,
2022a) and E2FGVI (Li et al., 2022d) combine the flow
completion and transformer as a whole, and the end-to-

end pipeline as adopted by E2FGVI is slightly better.
Fig. 15 illustrates some inpainted results with differ-

ent types of scenes and masks. From the first and sec-
ond columns, we find that the flow-based pixel propa-
gation methods, including FGVC, FGT, and ISVI, have
a good ability to recover the texture details and objects
with the guidance of neighboring frames. Through con-

textual correlation modeling, transformer-based video
inpainting methods, such as STTN, FuseFormer, and
E2FGVI, can complete the structure of objects, e.g.,
the window of a bus in the third column. Compared
to STTN, FuseFormer introduces more dense atten-
tion computation (with overlapping), which can help
the global structure recovery, e.g., the trunk in the
fourth column and the post in the last column. In the

Fig. 16: Several representative examples of blind video
decaptioning produced by (Chu et al., 2021).

fourth column, the coverage area is better filled with
the realistic grass texture by the ISVI method, which is
attributed to the more accurate flow completion com-
pared to FGVC and FGT.

3.6 Applications

3.6.1 Blind Video Decaptioning

Blind video decaptioning aims to automatically remove
subscripts and recover the occluded regions in videos

without mask information. Kim et al. (2019a) designed
an encoder-decoder framework based on 3D convolu-
tion. They applied residual learning to directly touch
the corrupted regions and leveraged feedback connec-

tions to enforce temporal coherence with the warping
loss. However, this method often suffers from the prob-
lem of incomplete subtitle removal. Chu et al. (2021)

proposed a two-stage video decaptioning network in-
cluding a mask extraction module and a frame attention-
based decaptioning module. Several examples produced
by (Chu et al., 2021) are shown in Fig. 16. The regions
originally covered by subtitles are filled with plausible
content.

3.6.2 Dynamic Object Removal

A common practical application of video inpainting tech-
nology is to automatically remove undesired objects,
which are static or dynamic at the time of recording.
In this part, we show two examples of dynamic object
removal with the recent video inpainting methods (Liu
et al., 2021b; Ren et al., 2022; Kang et al., 2022). As

shown in Fig. 17, the regions covered by dynamic ob-
jects can be filled with plausible content.
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Fig. 17: Three examples of dynamic object removal
produced by FuseFormer (Liu et al., 2021b), Dl-
Former (Ren et al., 2022), and ECFVI (Kang et al.,
2022).

4 Future Work

Image and video inpainting essentially is a conditional
generative task, therefore, the common generative mod-
els, such as VAE and GAN, are often adopted by the ex-
isting inpainting methods. Currently, diffusion models
have become the most popular generative models with

powerful capability of content synthesis. DMs would
have the potential to improve the performance of image
and video inpainting and may attract a lot of research

effort in the future. For this promising direction, several
challenging problems need to be solved.

How to use large pre-trained diffusion models

(e.g., denoising diffusion) for image inpainting?
DMs synthesize an image by a sequential application
of denoising steps, which are conducted in pixel or la-

tent space. For the inpainting task, the core idea is to
fill in the missing regions while preserving the origi-
nally valid content. Some researchers have made prelim-
inary attempts, such as Palette (Saharia et al., 2022a),
Blended Diffusion (Avrahami et al., 2022), and Con-
trolNet (Zhang and Agrawala, 2023), etc. One research
challenge is how to inject conditioning information into
the denoising processes of large pre-trained diffusion
models. Following the pipeline of diffusion models, they
need many iterations to generate the final image and
thus require a longer inference time compared to ex-

isting VAE- and GAN-based approaches. Another re-
search challenge is to implement fast inpainting meth-
ods based on diffusion. Also, while video-based gener-
ative diffusion models are still in their infancy, it is
expected that large pre-trained video generation mod-
els will become available in the near future. Leveraging
these models for video inpainting will be an interesting
task once these models become available.

How to use large pre-trained models for joint
text and image embedding (e.g., the latest CLIP
style architecture) for image inpainting?

Mainstream inpainting methods are uncontrollable, where
the inpainted content is unknown in advance and some-
times this is undesired for users. Reference-based in-
painting cannot fully satisfy this requirement. On the
other hand, recent studies (Rombach et al., 2022; Hertz
et al., 2022; Parmar et al., 2023) have shown that large
pre-trained diffusion models with massive text-image
pairs can synthesize high-quality images with rich low-
level attributes and details. In addition, Zhao et al.
(2023) implied that such pre-trained DMs also contain
high-level visual concepts. As a result, text-guided in-
painting based on the large pre-trained text-to-image
diffusion models would be able to fill the content un-
der the control of users. The first problem is to design
the appropriate prompt exactly indicating the user’s
intention. It is also challenging to merge the image em-
bedding from the user prompt with the corresponding
embedding of the input corrupted image. In addition,
text-based video inpainting will be a great avenue for
future work.

How to scale up training to datasets of 5B
images (e.g. LAION)?
Deep learning models are hungry for training datasets.
Currently, advanced diffusion models are pre-trained

on large-scale datasets containing millions or even bil-
lions of text-image data pairs. However, these mod-
els are mainly dominated by several industrial research

labs, where the datasets and training processes are not
transparent to the research community. Very recently,
the largest text-image dataset LAION-5B (Schuhmann

et al., 2022) containing 5.8 billion samples is publicly
available. In future work, it is worth designing efficient
methods for image and video inpainting that are trained
on such very large datasets directly.

How to utilize image data and pre-trained
image inpainting models to improve the models
of video inpainting? In addition to considering the
spatial aspect as in image inpainting, video inpainting
also needs to consider the temporal aspect. Therefore,
it is important and beneficial to transfer the inpainting
ability from image to video. A simple and direct solu-
tion is to take the result of image inpainting on each
frame as the initialization and then revise the spatial
and temporal consistency via carefully designed deep
models. Another possible research line is to take the
well-trained image inpainting models as the backbone

and aggregate the multiple frames in the feature space
with appropriate modules, such as deformable convo-
lution or attention. It’s still worth exploring combining
the pre-trained image inpainting model with deep video
prior.

How to create a large video dataset of 5B
videos and leverage it for video inpainting?
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Like image inpainting, taking advantage of large pre-
trained text-video diffusion models may be a new re-
search direction for video inpainting. However, current
text-video DMs are trained on datasets with 10 million
captioned videos, which inevitably limits the generation
and generalization ability of DMs. One potential direc-
tion of future research is to collect large-scale text-video
datasets (e.g., 5B pairs) and design the pre-training
methods scaling up to this amount. As we all know,
video inpainting is more difficult compared to its image
counterpart. Therefore, it is valuable to spend time on
all aspects of large video datasets: building large pub-
licly available video datasets, generating large diffusion
methods for video synthesis and using these pre-trained
methods for video inpainting, and separately designing
and training large-scale video architectures directly.

5 Concluding Remarks

The prevalence of visual data, including images and
video, promotes the development of related processing
technologies, e.g., image and video inpainting. Due to

their practical applications in many fields, these tech-
niques have attracted great attention from both the in-
dustrial and research communities over the past decade.

We presented a review of deep learning-based methods
for image and video inpainting. Specifically, we out-
line different aspects of the research, including a tax-

onomy of existing methods, training objectives, bench-
mark datasets, evaluation protocols, performance eval-
uation, and real-world applications. Future research di-
rections are also discussed.

Although current deep learning-based inpainting ap-
proaches have achieved remarkable performance improve-
ment, there are still several limitations: (1) Uncertainty
of artifacts. The results generated by inpainting meth-
ods often exhibit visual artifacts, which are difficult to

predict and prevent. There is almost no research work
to systematically and comprehensively study these ar-
tifacts. (2) Specificity. Current inpainting models are
usually trained on specific datasets, for example, face
images or natural scene images. In other words, models
trained on face images have bad predictions on nat-
ural scene images, and vice versa. Not enough mod-

els are trained on large scale datasets such as LIAON.
(3) Large-scale inpainting. Current advanced inpainting
methods still have limited performance on large-scale
missing regions. Many methods are based on attention
mechanisms, which are more fragile in large-scale sce-
narios. (4) High training costs. Current deep learning-
based inpainting methods often need one or more weeks
on multiple GPUs, which places very high demands on

resource consumption. (5) Long inference time. Diffu-
sion model-based methods can achieve better inpainting
performance, however, they need a very long running
time, which limits the application scope of inpainting
techniques.

Deep image/video inpainting techniques have a wide
range of real-world applications, however, they also raise
potential ethical issues that need to be carefully con-
sidered and addressed: (1) Security risks. Inpainting-
based visual data editing, e.g., object removal, may
maliciously be exploited, such as tampering with visual
data or altering evidence. (2) Ownership and copyright.
When there is no appropriate authorization, deep in-
painting techniques used to manipulate and enhance
images/videos could raise questions about ownership
and copyright. The inpainting result may strongly re-
semble or be strongly inspired by copyrighted material.
(3) Historical accuracy. Inpainting methods can be used
for the restoration of old photos/films or artworks. This
process could raise risks of inadvertently changing the

initial creative intention or historical accuracy of the
content, which requires careful verification by domain
experts. (4) Bias. If not properly trained, an inpaint-
ing model may introduce bias or unfairness, especially

when the training data is biased or unrepresentative.
This has the potential to perpetuate social prejudices
or inaccurately portray certain groups.
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Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J,
Nießner M (2018) Faceforensics: A large-scale video
dataset for forgery detection in human faces. arXiv
preprint arXiv:180309179

Roy H, Chaudhury S, Yamasaki T, Hashimoto T (2021)
Image inpainting using frequency-domain priors. J
Electronic Imaging 30(2):023016

Ruder M, Dosovitskiy A, Brox T (2016) Artistic
Style Transfer for Videos. In: German Conf. Pattern

Recog., pp 26–36
Rudin LI, Osher S, Fatemi E (1992) Nonlinear total

variation based noise removal algorithms. Physica D:

Nonlinear Phenomena 60(1):259–268
Sagong Mc, Shin Yg, Kim Sw, Park S, Ko Sj (2019)

PEPSI : Fast Image Inpainting With Parallel Decod-

ing Network. In: IEEE Conf. Comput. Vis. Pattern
Recog., pp 11352–11360

Saharia C, Chan W, Chang H, Lee C, Ho J, Salimans T,
Fleet D, Norouzi M (2022a) Palette: Image-to-Image

Diffusion Models. In: ACM SIGGRAPH Conf.
Saharia C, Chan W, Saxena S, Li L, Whang J, Den-

ton E, Ghasemipour SKS, Gontijo-Lopes R, Ayan

BK, Salimans T, Ho J, Fleet DJ, Norouzi M (2022b)
Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding. In: Adv. Neural In-
form. Process. Syst.

Schrader K, Peter P, Kämper N, Weickert J (2023) Ef-
ficient Neural Generation of 4K Masks for Homoge-
neous Diffusion Inpainting. In: Int. Conf. Scale Space
Variational Methods Comput. Vis., pp 16–28

Schuhmann C, Beaumont R, Vencu R, Gordon CW,
Wightman R, Cherti M, Coombes T, Katta A, Mullis
C, Wortsman M, Schramowski P, Kundurthy SR,
Crowson K, Schmidt L, Kaczmarczyk R, Jitsev J
(2022) LAION-5B: An open large-scale dataset for
training next generation image-text models. In: Adv.

Neural Inform. Process. Syst.
Shao H, Wang Y, Fu Y, Yin Z (2020) Generative image

inpainting via edge structure and color aware fusion.
Sign Process: Image Communication 87:115929

Shen L, Hong R, Zhang H, Zhang H, Wang M (2019)
Single-Shot Semantic Image Inpainting with Densely
Connected Generative Networks. In: ACM Int. Conf.
Multimedia, p 1861–1869

Shin YG, Sagong MC, Yeo YJ, Kim SW, Ko SJ (2021)
Pepsi++: Fast and lightweight network for image in-
painting. IEEE Trans Neural Networks Learn Syst
32(1):252–265

Shukla T, Maheshwari P, Singh R, Shukla A, Kulka-
rni K, Turaga P (2023) Scene Graph Driven Text-
Prompt Generation for Image Inpainting. In: IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., pp 759–
768

Simonyan K, Zisserman A (2014) Very deep convo-
lutional networks for large-scale image recognition.
arXiv preprint arXiv:14091556

Sohl-Dickstein J, Weiss E, Maheswaranathan N, Gan-
guli S (2015) Deep Unsupervised Learning using
Nonequilibrium Thermodynamics. In: Int. Conf.
Mach. Learn., vol 37, pp 2256–2265

Song L, Cao J, Song L, Hu Y, He R (2019) Geometry-

Aware Face Completion and Editing. In: AAAI Conf.
Artificial Intell., pp 2506–2513

Song Y, Yang C, Lin Z, Liu X, Huang Q, Li H, Kuo
CCJ (2018a) Contextual-Based Image Inpainting: In-

fer, Match, and Translate. In: Eur. Conf. Comput.
Vis., pp 3–18

Song Y, Yang C, Shen Y, Wang P, Huang Q, Kuo

CCJ (2018b) SPG-Net: Segmentation Prediction and
Guidance Network for Image Inpainting. In: Brit.
Mach. Vis. Conf.

Sun D, Yang X, Liu MY, Kautz J (2018a) PWC-Net:

CNNs for Optical Flow Using Pyramid, Warping, and
Cost Volume. In: IEEE Conf. Comput. Vis. Pattern
Recog., pp 8934–8943

Sun K, Xiao B, Liu D, Wang J (2019) Deep High-
Resolution Representation Learning for Human Pose
Estimation. In: IEEE Conf. Comput. Vis. Pattern
Recog., pp 5686–5696

Sun Q, Ma L, Joon Oh S, Gool LV, Schiele B, Fritz M
(2018b) Natural and Effective Obfuscation by Head
Inpainting. In: IEEE Conf. Comput. Vis. Pattern
Recog., pp 5050–5059

Suvorov R, Logacheva E, Mashikhin A, Remizova A,
Ashukha A, Silvestrov A, Kong N, Goka H, Park K,
Lempitsky V (2022) Resolution-robust Large Mask
Inpainting with Fourier Convolutions. In: Winter
Conf. App. Comput. Vis., pp 3172–3182

Tabak EG, Vanden-Eijnden E (2010) Density estima-

tion by dual ascent of the log-likelihood. Commun
Math Sci 8(1):217 – 233
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