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Abstract Videos contain multi-modal content, and ex-
ploring multi-branch cross-modal interactions with natural
language queries can provide great prominence to text-video
retrieval task (TVR). However, new trending methods apply-
ing large-scale pre-trained model CLIP for TVR only focus
on visual cues in videos. Furthermore, the traditional methods
of simply concatenating multi-modal features do not exploit
fine-grained cross-modal information in videos. In this pa-
per, we propose a multi-branch multi-modal hybrid fusion
(M2HF) network to hierarchically explore comprehensive
interactions between text queries and each modality content
in videos. Specifically, M2HF first utilizes visual features
extracted by CLIP to early fuse with audio and motion fea-
tures extracted from videos, obtaining audio-visual fusion
features and motion-visual fusion features respectively. Multi-
modal completion problem is also considered and solved in
this process. Then, visual features, audio-visual fusion fea-
tures, motion-visual fusion features, and texts extracted from
videos establish cross-modal relationships with caption text
queries in a multi-branch way. Finally, the retrieval outputs
from all branches are late fused to obtain final text-video re-
trieval results. Our framework provides two kinds of training
strategies, including an ensemble manner and an end-to-end
manner. Moreover, a novel multi-modal balance loss function
is proposed to balance the contributions of each modality for
efficient end-to-end training. M2HF allows us to obtain state-
of-the-art results on various benchmarks, e.g., Rank@1 of
66.0%, 68.6%, 33.9%, 57.4%, 57.3% on MSR-VTT, MSVD,
LSMDC, DiDeMo, and ActivityNet, respectively.

Keywords Multi-modality; Multi-branch; Hybrid Fusion;
Text-Video Retrieval.

1 Introduction
With billions of videos uploaded at any time on online video
platforms, it is worthwhile to retrieve the best corresponding

video for a given query to efficiently access the desired
video [43, 47, 48, 61]. Therefore, the tasks of Text-to-Video
(T2V) and Video-to-Text (V2T) are tackled in this paper. T2V
aims to obtain the ranking of all candidate videos for each
caption query, while V2T finds the ranking of all candidate
captions for each video query.

Unlike images, video is a kind of media owning multiple
different modalities. Therefore, considering and exploring
different modalities in videos is necessary for text-video re-
trieval. Some traditional methods [15, 18] have paid attention
to this point. For example, MMT [18] first extracted different
kinds of features, including audio, visual, motion, and face,
etc, to obtain a richer video representation. However, they
simply concatenate all these features and then feed them
into a transformer encoder. This blind multi-modal fusion
approach may cause the model to focus on certain modalities
and overwhelm other informative modalities, hindering the
final retrieval performance.

Recently, several methods [7, 17, 32, 34] have tried to utilize
the pre-trained text-image retrieval model CLIP (contrastive
language-image pretraining) [39], which is trained on 400
million text-image pairs to learn representation between text
and image, as the backbone to conduct text-video retrieval
task. For instance, CLIP4Clip [32] first utilized CLIP to
extract the visual frame features and the caption text token
features and then accumulated the similarity scores between
frame-level video features and sentence-level text features
for the final results. Based on CLIP4Clip, a recent parallel
work Hun Yuan_tvr [34] formulated video-sentence, clip-
phrase, and frame-word relationships to explore cross-modal
interactions. Unfortunately, these CLIP-based works entirely
ignore other rich multi-modal signals, such as audio, motion,
and speech in videos.

To solve the above drawbacks, in this paper, we propose a
novel method, i.e., Multi-branch Multi-Modal Hybrid Fusion
(M2HF), for text-video retrieval. As shown in Fig. 1, existing
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video retrieval works that simply concatenate the features of
all modalities will ignore some weak multi-modal features
but contain essential contents, such as audio, motion, and
text information, since the visual features are with more
semantic and extracted from stronger backbones. Therefore,
our M2HF not only exploits the multiple modality information
in an explicit multi-branch manner but also embraces the
powerful pre-trained model CLIP from the perspective of
multi-modal fusion. It can simultaneously exploit cross-modal
relationships and tolerate the intervention and asynchrony of
different modalities. First, M2HF early fuses audio and motion
features respectively with visual features extracted by CLIP,
producing audio-guided visual features and motion-guided
visual features, which explicitly pay attention to sound sources
and moving objects. Then, we comprehensively exploit the
relationships between caption text queries and visual features,
audio-guided visual features, motion-guided visual features,
and speech contents from ASR (automatic speech recognition)
in a multi-branch way. Finally, the results at each branch are
combined via a fusion approach as the final retrieval result.

Our contributions can be summarized as follows:
• We propose a Multi-branch Multi-modal Hybrid Fu-

sion network to solve text-video retrieval tasks, where
our method achieves state-of-the-art Rank@1 retrieval
results on five public benchmarks.

• Instead of simply concatenating all modality features,
M2HF exploits the multiple modality contents in an
explicit multi-branch manner when some of these fea-
tures are weak and some are powerful, and organically
integrates these modalities to improve the performance
of text-video retrieval task remarkably.

• M2HF is trained by two strategies: end-to-end training
(E2E) and an ensemble manner (Ensemble), where a
novel multi-modal balance loss is designed for E2E. This
loss can balance the branches and optimize the entire
network training.
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2 Related Work
2.1 Multi-modal Fusion
2.1.1 Early Fusion

Such methods mainly fuse multiple modalities at the feature
branch. Bilinear pooling-based approaches fuse two modali-
ties by learning a joint representation space, e.g., MLB (low-
rank bilinear pooling) [26] and MFB (multi-modal factorized
bilinear pooling) [59], etc. Attention-based methods fuse
features from different modalities based on the correlation,
including channel-wise attention [25], non-local model [49],
and transformer [44, 56], etc. Some researches [45, 62, 63]
apply early fusion methods to solve multi-modal visual media
editing and tracking tasks. The Write-A-Video [45] is an in-
novative tool designed for creating video montages primarily
through text editing. By inputting themed text and selecting a
related video repository, this tool enables users to effortlessly
generate video montages by automatically searching seman-
tically matching candidate shots and optimization-based shot
assembly. Zhang et al. [62] introduced a 3D animation system
to create, edit, preview, and render animations solely through
text editing. This system initially parses these texts into se-
mantic scene graphs and then retrieves 3D object models for
the composition of virtual scenes and motion clips for char-
acter animation. Zhang et al. [63] delivered a comprehensive
review of multi-modal tracking, culminating in the integration
of multi-modal trackers within a unified framework.

2.1.2 Late Fusion

Late fusion, also known as decision-branch fusion, first
trains different models on different modalities and then fuses
the predictions of these trained models [42]. Late fusion
methods mainly design different combination strategies to
merge models’ outputs, such as voting, average combination,
ensemble learning, and other combination methods.

2.1.3 Hybrid Fusion

Hybrid fusion [6, 36, 51, 54] attempts to exploit the advan-
tages of both early fusion and late fusion. Chen et al. [11]
proposed a novel approach that integrates both early and late
fusion techniques within a single model. Initially, they trained
deep Bidirectional Long Short-Term Memory (Bi-LSTM)
networks to process unimodal features. Subsequently, these
Bi-LSTMs were employed to fuse bi-modal features at an
early stage. Ultimately, the outputs from various models were
amalgamated at a later stage using a second-level Bi-LSTM,
enhancing the prediction accuracy. Hybrid multimodal fu-
sion has been used for emotion recognition [33]. It uses an
early fusion strategy to obtain the audio-visual features and
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Fig. 1 The comparison between the previous multi-modal fusion methods which are not in a multi-branch manner (a) and our multi-modal
fusion method in a multi-branch manner (b). Each branch (“Visual”, “Audio”, “Speech”, and “Motion”) of M2HF from videos can fully
explore the multi-modal contents and build more explicit relationships with germane text tokens of captions for better video understanding
and retrieval performance compared to previous methods. Moreover, when some of these multi-modal features are powerful (Visual) and
some are weak (Audio, Motion, and Speech), M2HF can fully exploit the multiple modality contents compared to previous methods.

bisignal features and a late fusion strategy to further boost
the model’s recognition performance. Xu et al. [55] uses the
hybrid fusion strategy for Humor Detection to improve the
model’s performance.

It has been also used for multi-modal speaker identifica-
tion [52] and multi-media event detection (MED) [29]. Atrey
et al. [3] adopted a Bayesian inference fusion approach at
hybrid levels (the feature and the decision levels). Ayache
et al. [4] proposed a hybrid fusion approach to normalize
early fusion and contextual late fusion for semantic indexing
of multimedia resources. Lan et al. [29] applied the hybrid
fusion method to solve multi-media event detection. This
work integrates the advantages of early fusion to capture
feature relationships and late fusion to handle overfitting.
In the fusion process of video and sound signals in [20],
the listening deep model based only on video signals and
only on sound signals is first trained to generate model test
results respectively. Then the integrated features of video and
sound signals are input into the audio-visual system. Finally,
a weighted method is used to integrate the predictions of
multiple models to obtain a better recognition result. The
combination strategy of hybrid fusion methods is a key factor
in improving model performance. Morales et al. [35] trained
separate prediction models for each modality and then ob-
tained predictions from every modality. These new feature
vectors are used to train a new model for the final prediction.
Alghowinem et al. [1] connected the results of each modality
to early fusion feature vectors and then performed model
predictions. A majority voting method is used to evaluate
the final effect. Shalu et al. [41] inputted the three modals’

features into linear layers to obtain the corresponding scores.
Then, they spliced the obtained scores to obtain the fused
features and finally inputted the fused features into linear
layers for model training.

Overall, the hybrid fusion strategy combines feature and
decision levels, which can utilize the advantages of both early
and late fusion strategies. Therefore, in this work, we also
adopt the hybrid fusion mechanism. We apply this method
to design a novel framework for video retrieval task to better
fuse these multi-modal features when some of these features
are weak and some are powerful. M2HF can simultaneously
exploit cross-modal relationships and tolerate the intervention
and asynchrony of different modalities.

2.2 Text-Video Retrieval

For TVR, two research directions mainly exist: multi-modal
features and large-scale pre-trained models.
2.2.1 Text-Video Retrieval based on Multi-modal Features
One direction applies rich multi-modal cues to retrieve videos.
MMT encoded seven modalities such as audio, visual, and
motion separately, and then fed them into a transformer for
better video representation. MDMMT [15] extended MMT
by optimizing training datasets. MDMMT-2 [28] introduced
a three-stage training process and double positional encoding
for better retrieval performance. However, these methods
mainly input various multi-modal features into an encoder
producing video representations. This fusion method is some-
what simple and the interactions between multiple modalities
and text queries are blind, potentially limiting the final re-
trieval performance. Instead, our fine-grained hybrid fusion
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method can fuse multi-modal features and explicitly model
text-video relationships in a multi-branch manner.

2.2.2 Text-Video Retrieval based on CLIP

Another direction attempts to utilize pre-trained CLIP as the
backbone for TVR task. The seminal work CLIP4Clip ex-
ploited CLIP to extract features of visual frames and captions,
and then computed the similarity scores between video and
text features. Based on CLIP, Fang et al. [16] introduced
temporal difference block and temporal completion block to
enhance temporal relationships between video frames and
video captions. Cheng et al. [12] proposed a novel dual
Softmax loss (DSL). Wang et al. [46] carefully studied the
cross-modality interaction process and representation learning
for TVR, and proposed a disentangled framework, including
a weighted token-wise interaction (WTI) block and a channel
decorrelation regularization block, to model the sequential
and hierarchical representation. Recently, Gorti et al. [21]
leveraged CLIP as a backbone and proposed a parametric text-
conditioned pooling to aggregate video frame representations
based on the similarity between the video frame and text. Hu
et al. [24] performed feature fusion at both video and text
ends with different feature extraction. Lin et al. [30] generated
multiple prototypes for video automatically to account for
its rich information, and proposed a text-adaptive matching
strategy to dig the correspondence between texts and videos.
Bain et al. [5] introduced a dual encoder model for end-to-end
text-video retrieval training, taking advantage of large-scale
image and video captioning datasets. However, these CLIP-
based methods mainly focus on the visual modality, while
ignoring other information in videos, such as motion, audio,
and speech, which are still important cues for TVR task.

3 Proposed Method
3.1 Overall Architecture

Fig. 2 illustrates the entire pipeline of our M2HF. Given a
set of video-text pairs {(V1, t1), ..., (Vn, tn)}, our method
measures the similarity of video and text from four branches,
as shown in the middle of Fig. 2. M2HF explicitly establishes
relationships and conducts similarity computation between
text tj and visual vi, audio ai, motion mi, and speech si

extracted from video Vi, respectively.
Multi-modal fusion is in a hybrid fusion way: audio and

motion features are early fused with visual features, i.e.,
audio-visual fusion and motion-visual fusion in Fig. 2, which
mitigates the representation ability gap between visual features
and other modality features to further enhance multi-modal
understandings; all branchs’ ranking results are late fused for

the final retrieval results by selecting the best ranking in the
output of each branch. We aggregate multi-modal cues in a
hierarchical manner for more accurate retrieval performance.
Furthermore, two training strategies (E2E and Ensemble)
are provided in this paper, and a novel multi-modal balance
loss is proposed to serve E2E training by minimizing each
pair score and calculating the balanced loss. In the following,
we describe the details of the four branches and training
objectives.

3.2 Visual-to-Text Branch

The visual-to-text branch is designed for making the cross-
modality relationship between visual features from video and
query text features. Image encoder ViT [14] and text encoder
Bert [13] of CLIP is first used to extract visual features
(vi ∈ RF×dv ) and text features (ti ∈ RT×dt), respectively,
where F is the number of video frames, T is the number of
text tokens, dv and dt represents the dimensions of visual and
text features, respectively. To compute the similarity matrix
Sv−t between visual features and text features, we choose the
weighted token-wise interaction (WTI) function. The entire
process is computed as:

t2v_logits =
T∑

p=1

fp
tw,θ(ti)maxF

q=1(
tpi
∥tpi ∥2

)T(
vqi
∥vqi ∥2

),

v2t_logits =
F∑

q=1

fq
vw,θ(vi)maxT

p=1(
tpi
∥tpi ∥2

)T(
vqi
∥vqi ∥2

),

Sv−t[i, i] = WTI(vi, ti) =
t2v_logits+ v2t_logits

2.0
,

(1)
where ftw,θ and fvw,θ both are the combination of the MLP
(multilayer perceptron) and a Softmax, i is a sampled index,
p and q denote the index of text token and video frame.

3.3 Audio-to-Text Branch

At the audio-to-text branch, audio features and visual features
are early fused to highlight the visual semantic information
related to audio, e.g., sound-producing objects. Then, the
audio-guided visual features are used to build connections
with text features. Audio features (ai ∈ RF×da ) are extracted
from the log mel-spectrogram via the VGGish [23] pre-trained
on AudioSet [19], where da is the dimension of audio features.
We adopt the MFB-based method in text-to-video task to early
fuse audio and visual features, yielding high-level semantic
audio-visual fusion features Favi

∈ RF×dv . Specifically,
audio features ai and visual features vi are projected and
completed as the same dimension kd using linear layers and
ReLU. The completed audio and visual features are multiplied
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Fig. 2 The architecture of our multi-branch multi-modal hybrid fusion network (M2HF) for text-video retrieval. In the beginning, “Visual”,
“Audio”, “Speech”,“Motion”, and “Text” are extracted. The early fusion strategies (“Audio-Visual Fusion” and “Motion-Visual Fusion”) are
conducted to fuse multi-modal features with visual features. The multi-modal contents of each branch make a relation with the caption text.
The late fusion strategy (Multi-modal balance fusion) is conducted to select the best ranking from all branches for the final retrieval results.

and fed into the sum pooling layer with the kernel size k. The
formulation is as follows:

Favi
= Drop(SP(ΨTai ⊙ ΦTvi, k)), (2)

where Ψ ∈ Rda×(kd) and Φ ∈ Rdv×(kd) are two learnable
matrices, ⊙ represents element-wise product, SP(·, k) is the
sum pooling with kernel size k and stride k, and Drop(·) is
a dropout layer to prevent the over-fitting. To stabilize the
model training, power and L2 normalizations are utilized:

Favi
← sign(Favi)

√
|Favi

|,Favi ← Favi/ ∥Favi∥ . (3)

Next, the audio-visual fusion feature guides the raw visual
features vi by channel-wise attention operation for obtain-
ing the final audio-guided visual features. A squeeze-and-
excitation operation [25] is applied to produce channel-wise
attentive weights (WA

i ∈ Rdv×1). This process is formulated
as:

WA
i = δ(W2σ(W1(Favi

))), (4)

where W1 ∈ Rdv×d and W2 ∈ Rd×dv are two linear trans-
formations with d = dv

2 ; σ and δ denote the ReLU and
sigmoid functions, respectively.

The final audio-guided visual features are obtained via:

avi =WA
i ⊙ vi. (5)

Similar to the visual-to-text branch, the relationship be-
tween audio-guided visual features and text features is formu-
lated by WTI. The detailed formula of the similarity matrix
Sa−t is similar with Eq.(1) replacing vi with avi.

In real-world scenarios, not all videos have audio signals,
i.e., modality missing problem, therefore, we propose a
simple and effective completion method. Specifically, we pad
missing audio features with element 1. The primary idea of
this completion strategy is that the guidance mechanism can
still work by guiding with original visual features.

3.4 Motion-to-Text Branch

The motion-to-text branch is proposed to early fuse motion
features with visual features obtaining motion-guided visual
features, which explicitly consider the object movement in
the visual modality. The fused features then compute the sim-
ilarity with text features. Similar to MMT [63], we directly
use the motion features extracted from S3D [53] with the
RGB sequences as input. RGB frames are also fed into ViT
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for extracting the visual features, however, ViT embeds each
2D frame patch independently, which ignores the temporal
information among image frames. The motion features ex-
tracted with S3D can provide more spatio-temporal cues of
moving objects for the M2HF framework. In our work, the
motion features is defined as mi ∈ RF×dm , where dm is the
dimension of motion features.

For the fusion of motion features and visual features,
we utilize the encoder of transformer block. The detailed
calculation process is as follows:

Encoder(Q,K, V ) = LN(X + Y ),

X = MHA(Q̃, K̃, Ṽ ), Y = FFN(LN(X + Q̃)),

Q̃ = QWQ̃, K̃ = KWK̃ , Ṽ = VWṼ ,

(6)

where Q, K, V ∈ RF×d are input features of transformer’s
encoder; WQ̃,WK̃ ,WṼ ∈ Rd×d are projection matrices;
LN refers to the layer normalization; MHA is the multi-head
attention with 4 heads; and FFN is the feed forward network.

As shown in the bottom of Fig. 2, motion features mi

and visual features vi are first fed into the intra-modality
attention module to learn the informative segments of each
modality. The motion modality is taken as an example to
explain the intra-modality attention module. Specifically,
motion features are first projected yielding query features
(Q ∈ RF×dm), key features (K ∈ RF×dm), and value fea-
tures (V ∈ RF×dm). They are then fed into the encoder of
the transformer producing the self-attentive motion features
mself = Encoder(Q,K, V ) via Eq. 6. Self-attentive visual
features vself are obtained using the same way.

Next, the inter-modality attention module is introduced to
exploit the relationship between motion and visual features
via the encoder of the transformer as well. Different from
the intra-modality computation, key and value features of the
inter-modality attention are the concatenation of one modality
features and the self-attentive features of another modality.
Cross-modality features mcross and vcross are obtained as:
mcross = Encoder(mi, cat(mi, v

self
i ), cat(mi, v

self
i )),

vcross = Encoder(vi, cat(vi,m
self
i ), cat(vi,m

self
i )),

(7)
where cat is the concatenation of two features in the temporal
dimension. The cross-modality features are then integrated
by the motion-visual fusion module, also an encoder of the
transformer, to yield motion-visual fusion features Fmvi ∈
RF×dv via:

Fmvi
= Encoder(Q,K, V ),

Q = mcross
i ⊙ vcrossi ,K, V = cat(mcross

i , vcrossi ).
(8)

After that, Fmvi
is used to guide the visual features to

highlight the moving objects. The guidance weights are first

estimated via the squeeze-and-excitation block [25] as follows:

WM
i = δ(W4σ(W3(Fmvi))), (9)

where W3 ∈ Rdv×d and W4 ∈ Rd×dv are two linear trans-
formations with d = dv

2 . Motion-guided visual features mvi

are achieved via:

mvi =WM
i ⊙ vi, (10)

Finally, the similarity matrix Sm−t between motion-guided
visual features and text features are calculated via the WTI,
i.e., replacing vi in Eq.(1) with mvi.

3.5 Speech-to-Text Branch

In addition to visual and motion information, videos also con-
tain textual content, e.g., subtitles and text in image frames,
and text extracted from speech through ASR techniques. Con-
sidering the generality, in this work, we mainly exploit the text
information related to the speech audio channel to enhance the
text-video retrieval performance. Clues hidden in subtitles and
text will be studied in our future work. For the speech-to-text
branch, the same modality can directly compute the similar-
ity matrix Ss−t without intervention from other modalities.
Jaccard scores [38] are formulated for each pair of speech
and text. Before the formulation, several pre-processing oper-
ations are conducted. First, stop words including pronouns,
integrated nouns, and other less representative words are
filtered from speech and text. Then, the remaining words
will be filtered again to keep only nouns since nouns are
more representative than verbs, adverbs, prepositions, and
others. Next, the filtered tokens are converted to the same
root. Finally, all the letters are lowercase yielding the final set
of speech Ss and text St. The calculation of the Jaccard score
is as:

Ss−t[i, i] = Jaccard(Ss, St) =
len(Ss ∩ St)

len(Ss ∪ St)
, (11)

where Jaccard(·, ·) computes the jaccard correlation, and
len(·) calculates the number of each set’s tokens.

In fact, we have tried to extract the speech and text features
and compute the similarities between them to obtain the results
of this branch. However, the performance of computing the
similarity with deep features is not better than that of explicitly
matching the tokens from speech and text. The backbones used
to extract those features depend on the attention mechanism.
This mechanism drowns out keywords that appear relatively
rarely, whether global or local, wasting those leads. However,
the word-matching strategy cannot sacrifice these words. This
branch will be developed and improved in the future.



M2HF: Multi-branch Multi-modal Hybrid Fusion for Text-Video Retrieval 7

3.6 Ensemble and E2E Text-Video Retrieval

In our work, M2HF is trained with two strategies: an ensemble
manner (Ensemble) and end-to-end training (E2E). As for
Ensemble, we train each branch separately obtaining the
respective model and then ensemble the retrieval outputs of
each model. As for E2E, we train all branches together with
the help of multi-modal balance loss outputting one model,
and we use the retrieval outputs of each branch to obtain final
results.

3.6.1 Ensemble Retrieval

Inspired by ensemble learning, we first train the model of
each multi-modality branch independently and then fuse their
predictions with a late fusion method. Dual softmax loss
(DSL) [12] is applied for the visual-to-text, audio-to-text, and
motion-to-text branch. DSL pursues the dual optimal match
and thus obtains good retrieval performance. Specifically, the
similarity matrices Sv−t, Sa−t, and Sm−t are fed into DSL
function. We take Sv−t as an example, the loss of visual-to-
text branch (Lv = − 1

B

∑B
i Lv) formulates as follows:

Pv2t[i, j] =
e(λSv−t[i,i])∑B
j=1 e

(λSv−t[j,i])
,

Pt2v[i, j] =
e(λSv−t[i,i])∑B
j=1 e

(λSv−t[i,j])
,

Lv2t[i] = log(
e(ηSv−t[i,i]Pv2t[i,i])∑B

j=1 e
(ηSv−t[i,j]Pv2t[i,j])

),

Lv = Lv2t + Lt2v,

(12)

where λ is a temperature hyper-parameter to smooth the
gradients, B is the batch size, and η is a logit scaling factor.
La and Lm are obtained in the same way.

For the evaluation, a novel late fusion strategy, called multi-
modal balance fusion (MMBF), is proposed to aggregate the
outputs of all four branches by selecting the best ranking from
each branch. The ranking of each branch is denoted asRv−t,
Ra−t, Rm−t, and Rs−t, which are obtained based on the
respective similarity matrices. Then, the final ranking is

R = min(Rv−t,Ra−t,Rm−t,Rs−t), (13)

where min is element-wise minimizing operation.
In practice, it rarely happens that different videos have

the same similarity to the same retrieved text. Moreover, the
hybrid fusion strategy can mitigate the situation where two
videos have the same minimal rank. For example, if there is
one more best choice for a case based on theRv−t ranking,
current works will choose the video with the smallest id
number as the correct answer. However, our method uses four
rankings to obtain the best choice, which is more robust.

3.6.2 E2E Retrieval
In addition, we introduce a novel multi-modal balance loss
(MMBL) to train the model in an end-to-end manner. Specif-
ically, MMBL minimizes each pair score in each branch
yielding the final balanced loss as follows:

L = − 1

B

B∑
i

min(Lv,La,Lm). (14)

where B is the batch size, and min is element-wise minimiz-
ing operation. We also try other similar fusion methods, in-
cluding average, element-wise maximizing, and element-wise
adding, and find that the element-wise minimizing achieves
the best performance. The evaluation of E2E retrieval also
uses MMBF.

4 Experiments
4.1 Experimental Settings
4.1.1 Datasets
In this work, we use five common benchmarks: MSR-
VTT [57], MSVD [9], LSMDC [40], DiDeMo [2], and
ActivityNet [27] to conduct extensive experiments to validate
our method. The same settings as CLIP4Clip are used in this
work.

MSR-VTT is a large-scale dataset containing 10,000 video
clips and each video clip is described with 20 natural sentences
via Amazon Mechanical Turks. Following the setting [58],
9,000 and 1,000 videos are used for training and testing,
respectively.

MSVD has 1,970 video clips, and each video clip contains
about 40 sentences. We adopt the original data split, 1,200
videos for training, 100 videos for validation, and 670 videos
for testing.

LSMDC is composed of 118,081 video clips extracted
from 202 movies and each video clip has a caption. The
validation set and evaluation set contains 7,408 and 1,000
videos, respectively.

ActivityNet contains 20,000 YouTube videos with 100k
captions. Standard split, the training set has 10,009 videos
and the validation set has 4,917 videos, is followed. Like [60],
we concatenate all the captions of a video as a paragraph.

DiDeMo contains 10,000 videos annotated with 40,000
sentences. All captions of a video are concatenated into a
paragraph [31].
4.1.2 Metrics
For the performance evaluation, we adopt the standard re-
trieval metrics: Recall at rank N (R@N, higher is better),
mean rank (MnR, lower is better), and median rank (MdR,
lower is better).
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Table 1 Retrieval results on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

T2VLAD 29.5 59.0 70.1 4.0 - 31.8 60.0 71.1 3.0 -
CLIP4Clip 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 -
VCM 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7
X-Pool 46.9 72.8 82.2 2.0 14.3 - - - - -
CAMOE 48.8 75.6 85.3 2.0 12.4 50.3 74.6 83.8 2.0 9.9
DCR 53.3 80.3 87.6 1.0 - 56.2 79.9 87.4 1.0 -
LAFF 45.8 71.5 82.0 - - - - - - -
TVMM 36.2 64.2 75.7 3.0 - 34.8 63.8 73.7 3.0 -
Hun Yuan_tvr (ViT-B/16) 55.0 80.4 86.8 1.0 10.3 55.5 78.4 85.8 1.0 7.7
Hun Yuan_tvr (ViT-L/14) 53.2 77.6 83.9 1.0 10.1 54.0 78.8 87.1 1.0 8.3
MMT (ViT-B/16) 56.3 83.4 87.1 1.0 9.2 56.1 76.1 82.4 1.0 8.2
MMT (ViT-L/14) 55.9 79.2 81.5 1.0 9.3 56.4 72.1 89.1 1.0 7.5
Ours_Ensemble (ViT-B/16) 59.9 82.8 89.3 1.0 8.1 60.7 82.7 90.2 1.0 5.6
Ours_Ensemble (ViT-L/14) 65.3 85.3 91.7 1.0 7.9 66.0 86.0 91.7 1.0 5.0
Ours_E2E (ViT-B/16) 62.1 84.8 90.7 1.0 6.5 63.5 85.6 91.6 1.0 5.6
Ours_E2E (ViT-L/14) 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1

Table 2 Retrieval results on MSVD dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

CLIP4Clip 46.2 76.1 84.6 2.0 10.0 48.4 70.3 77.2 2.0 -
X-Pool 47.2 77.4 86.0 2.0 9.3 - - - - -
CAMOE 49.8 79.2 87.0 - 9.4 - - - - -
DCR 50.0 81.5 89.5 2.0 - 58.7 92.5 95.6 1.0 -
LAFF 45.4 75.5 84.1 - - - - - - -
TVMM 36.7 67.4 81.3 2.5 - - - - - -
Hun Yuan_tvr (ViT-B/16) 54.6 82.4 89.6 1.0 8.0 58.0 85.4 89.6 1.0 5.5
Hun Yuan_tvr (ViT-L/14) 57.8 83.3 89.6 1.0 7.8 63.4 88.1 92.6 1.0 3.3
MMT (ViT-B/16) 57.1 84.1 90.4 1.0 7.5 58.5 88.1 90.0 1.0 4.2
MMT (ViT-L/14) 60.4 87.1 90.8 1.0 6.1 67.1 90.2 91.2 1.0 3.0
Ours_Ensemble (ViT-B/16) 61.7 86.1 91.5 1.0 6.3 69.1 87.3 93.9 1.0 3.4
Ours_Ensemble (ViT-L/14) 67.1 88.1 92.7 1.0 5.5 72.1 89.3 95.5 1.0 2.6
Ours_E2E (ViT-B/16) 62.7 86.3 91.7 1.0 6.0 73.3 90.6 94.3 1.0 2.7
Ours_E2E (ViT-L/14) 68.6 88.7 92.9 1.0 5.1 75.7 91.0 96.3 1.0 2.6

Table 3 Retrieval results on LSMDC dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

T2VLAD 14.3 32.4 - 16.0 - 14.2 33.5 - 17.0 -
CLIP4Clip 22.6 41.0 49.1 11.0 - - - - - -
X-Pool 25.2 43.7 53.5 8.0 53.2 - - - - -
CAMOE 25.9 46.1 53.7 - 54.4 - - - - -
DCR 26.5 47.6 56.8 7.0 - 27.0 45.7 55.4 8.0 -
TVMM 17.8 37.1 45.9 13.5 - 16.5 34.3 44.6 14.0 -
Hun Yuan_tvr (ViT-B/16) 26.3 46.1 54.1 7.0 55.3 27.1 46.6 54.5 7.0 45.7
Hun Yuan_tvr (ViT-L/14) 29.7 46.4 55.4 7.0 56.4 30.1 47.5 55.7 7.0 48.9
MMT (ViT-B/16) 28.1 46.3 56.5 7.0 50.3 30.1 49.3 58.1 7.0 40.4
MMT (ViT-L/14) 28.3 48.1 57.8 7.0 53.1 30.6 48.6 56.1 7.0 47.3
Ours_Ensemble (ViT-B/16) 30.2 46.8 58.2 7.0 43.2 29.8 48.1 57.8 6.0 37.2
Ours_Ensemble (ViT-L/14) 33.9 55.9 64.2 4.0 34.8 34.0 57.1 64.6 3.0 28.3
Ours_E2E (ViT-B/16) 30.3 46.4 55.9 7.0 44.8 29.1 46.8 56.3 6.0 39.6
Ours_E2E (ViT-L/14) 31.8 53.2 62.2 4.0 36.9 31.6 53.3 63.6 5.0 30.8

Table 4 Retrieval results on DiDeMo dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

CLIP4Clip 41.4 58.2 79.1 2.0 - 42.8 69.8 79.0 2.0 -
CAMOE 43.8 71.4 - - - 45.5 71.2 - - -
DCR 49.0 76.5 84.5 2.0 - 49.9 75.4 83.3 2.0 -
TVMM 36.5 64.9 75.4 3.0 - - - - - -
Hun Yuan_tvr (ViT-B/16) 52.1 78.2 85.7 1.0 11.1 54.8 79.9 87.2 1.0 7.3
Hun Yuan_tvr (ViT-L/14) 49.5 73.7 81.6 2.0 14.8 50.3 76.5 83.7 1.0 10.4
MMT (ViT-B/16) 54.3 79.5 86.1 1.0 10.5 55.5 80.3 88.4 1.0 7.3
MMT (ViT-L/14) 53.2 72.1 84.9 2.0 16.4 54.6 78.3 85.2 1.0 9.2
Ours_Ensemble (ViT-B/16) 54.8 79.5 85.3 1.0 10.0 56.0 79.0 86.1 1.0 7.3
Ours_Ensemble (ViT-L/14) 57.1 79.6 87.3 1.0 9.6 58.4 80.6 88.8 1.0 7.3
Ours_E2E (ViT-B/16) 56.9 79.3 85.3 1.0 9.9 56.4 78.8 86.3 1.0 7.3
Ours_E2E (ViT-L/14) 57.4 79.8 87.8 1.0 9.2 58.9 80.7 89.5 1.0 7.2
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Table 5 Retrieval results on ActivityNet dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

T2VLAD 23.7 55.5 - 4.0 - 24.1 56.6 - 4.0 -
CLIP4Clip 41.4 73.7 85.3 2.0 - - - - - -
VCM 40.8 72.8 - 2.0 7.3 42.6 74.9 86.2 2.0 6.4
CAMOE 51.0 77.7 - - - 49.9 71.4 - - -
DCR 46.2 77.3 88.2 2.0 - 45.7 76.5 87.8 2.0 -
Frozen 28.8 60.9 - + 3.0 - - - - - -
Hun Yuan_tvr (ViT-B/16) 57.3 84.8 93.1 1.0 4.0 57.7 85.7 93.9 1.0 3.4
Hun Yuan_tvr (ViT-L/14) 55.3 83.3 92.2 1.0 4.3 55.8 84.1 93.2 1.0 3.6
MMT (ViT-B/16) 56.6 84.1 92.3 1.0 3.7 56.1 84.8 93.2 1.0 5.1
MMT (ViT-L/14) 55.7 84.3 92.8 1.0 5.2 57.3 85.1 93.5 1.0 5.0
Ours_Ensemble (ViT-B/16) 56.2 81.3 89.5 1.0 5.2 55.1 80.6 89.2 1.0 5.1
Ours_Ensemble (ViT-L/14) 57.3 81.9 89.4 1.0 5.8 58.0 82.6 90.7 1.0 4.6
Ours_E2E (ViT-B/16) 57.1 82.0 90.5 1.0 4.8 57.0 81.8 90.2 1.0 4.7
Ours_E2E (ViT-L/14) 56.4 81.1 89.1 1.0 5.9 57.4 82.2 90.6 1.0 4.6

CLIP4Clip

Text
A baby is standing in a kitchen.  He is playing a harmonica.  He is swirling 
back and forth dancing.

Ours

Speech

Do it again. Yeah. Job is. A? Oh, sp a harmonica. Yeah, you do a nice job. 
Careful, careful, wo multitasking here he's spinning in with harmonica. 
He's going to go over. Hold on. I do one minute. 

A little boy pours mouthwash into his mouth from a cup.  He spits it into the 
sink, then starts crying from the bad taste. He walks out of the room in tears.
Rira. So. Okay. That taste. A spicy. Is the best mouthwash ever? But. You 
have some water. Oh, god, i'm sorry. Now. A? Oh! Let you stay out, charlie. 
Look at one sport here, just drop some more. You are insane. And they? 

MMT

Fig. 3 Qualitative comparisons of our method with CLIP4Clip and MMT. “Blue”, “Green”, “Orange”, and “Purple” represent visual,
speech, motion, and audio cues, respectively. “Red” means false retrieval results.

4.1.3 Pre-trained models
For MSR-VTT, LSMDC, and ActivityNet datasets, we directly
utilize the shared audio and motion features from MMT,
whose motion features are extracted using S3D trained on
Kinetics [8] action recognition dataset and audio features
are extracted using VGGish model [23] trained on YT8M.
However, MMT does not provide multi-modal features for
MSVD and DiDeMo datasets. Therefore, we extracted motion
features using S3D trained on Kinetics and audio features
using VGGish model [23] trained on AudioSet [19] for MSVD
and DiDeMo datasets. Visual features are all extracted from
ViT model of CLIP. Texts are all extracted using conformer
model [22] trained on librispeech [37] and gigaspeech [10]
datasets.
4.1.4 Implementation Details
Our method is implemented with PyTorch 1.7.1, and is trained
on NVIDIA Tesla A100 GPU. All the experiments are trained
on 8 GPUs. We set the initial learning rate as 1e− 7 for the
CLIP and 1e− 4 for the remaining parameters, respectively,
the temperature hyper-parameter λ in DSL is 1e − 3. The
pre-trained weights in CLIP architectures including ViT-B/16
and ViT-L/14 are included in our work. Due to the big size
of the above basic models, the sizes of the batch, frame

length, and word length are also adjusted to adapt them.
For MSR-VTT (ViT-B/16), MSVD (ViT-B/16), and LSMDC
(ViT-B/16), the frame number F and token number T are 12
and 32, respectively, Adam optimizer with batch size (B) of
128 is used for training the model with 5 epoch. For DiDeMo
(ViT-B/16) and ActivityNet (ViT-B/16), F = 64, T = 64,
and B = 32. For MSR-VTT (ViT-L/14), MSVD (ViT-L/14),
and LSMDC (ViT-L/14), F = 32, T = 32, and B = 32. For
DiDeMo (ViT-L/14) and ActivityNet (ViT-L/14), F = 64,
T = 32, and B = 16.

4.2 Comparison with State-of-the-art Methods

In this subsection, we compare M2HF with state-of-the-art
methods, including T2VLAD [50], CLIP4Clip, VCM [7],
CAMOE [12], X-Pool [21], LAFF [24], TVMM [30], DCR
[46], Frozen [5], Hun Yuan_tvr, and MMT, on MSR-VTT,
MSVD, LSMDC, DiDeMo, and ActivityNet benchmarks.

Table 1 shows results of MSR-VTT, which can be seen that
our M2HF significantly surpasses CLIP4Clip by 21.5% R@1
and outperforms a very recent parallel work Hun Yuan_tvr
by 11.0%. Table 2 shows that M2HF achieves 10.8% im-
provement on the MSVD compared to Hun Yuan_tvr. For
LSMDC as shown in Table 3, our approach obtains the gain
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Visual

Text In an interview a person in advocating education among the populace.

Visual

Speech
Men to tranform birth in any society the first thing is education of women 
and the entire populace in normal physiolofical birth. 

Guy explaining what stiff person syndrome is.

sps or stiff person syndrome is a rare neurologic disease that causes the body 
of a person affected to become progessively rigid as time goes on their 
muscles become incrasingly constricted.

A women is talking about the books she likes and the second favourite one is 
the amc the walking dead.

Speech
My second favorite is amc the walking dead I konw I kind of did it like the 
intro It’s basically about the zombie apocalate howcanyou not like ite when 
their zombie is incolced.

A man is discussing oxiders in bulk form.

Volume. In this case, when we factor in the widening and the lengthening of 
the wire. That's uh, that's pretty phenomenal because tin oxide is in bulk 
form is a very brittle material.

Text

Visual

A man is talking about space project adam.

Speech
The first man space flight, which later became mercury, was originally 
called project adam and then when nasa was set up in one thousand nine 
hundred and fifty seven, the name was change in fact. In huntsville. 

The chef adds fish sauce and fish paste to a large stainless steel cooking pot.

We have now two table spoons of the fish sauce 1 ,2 and then we have one 
table spoon of the fish paste remember that all men.

Text

Fig. 4 Ablation studies of “Speech” branch in M2HF. The above examples all use the contents from the “Speech” branch to match the
correct text. “Speech” branch can provide very abstract contents, such as “populace”, “space project adan”, and “stiff person syndrome”,
which cannot be provided by other modalities.

Fig. 5 The frequency statistics of each branch with the greatest contribution. A dataset has 4 groups (Ours_Ensemble (ViT-B/16),
Ours_Ensemble (ViT-L/14), Ours_E2E (ViT-B/16), and Ours_E2E (ViT-L/14)) shown in the Table 6-Table 10. We count the frequency of
each branch being the greatest contribution from a total of 20 groups for five datasets.

Audio

Motion

Speech

Visual

Text
A man is seen playing a 
musical instrument.

A man is jumping in the 
background.

A camera pans around a 
large ocean floor with 
scuba divers seen.

The man takes the back 
wheel of a bike off of the 
frame. The man uses 
wrenches to looses a nut 
on the back wheel axle. 

Fig. 6 Ablation studies of M2HF. “Audio”, “Motion”, “Speech”, and “Visual” are the model of only using corresponding branch.
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Table 6 Ablation studies on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Audio (ViT-B/16) 52.8 78.0 86.1 1.0 10.3 52.9 77.3 86.4 1.0 8.0
Motion (ViT-B/16) 53.4 78.2 86.2 1.0 9.9 53.0 78.3 86.5 1.0 8.3
Speech (ViT-B/16) 5.7 12.5 14.1 - - 5.6 11.1 12.3 - -
Visual (ViT-B/16) 53.2 79.1 86.9 1.0 9.9 52.7 78.5 86.3 1.0 7.3
Audio (ViT-L/14) 53.0 77.6 85.3 1.0 11.7 54.7 77.5 85.1 1.0 8.6
Motion (ViT-L/14) 53.3 77.1 85.7 1.0 11.4 53.2 77.1 86.3 1.0 8.6
Speech (ViT-L/14) 5.7 12.5 14.1 - - 5.6 11.1 12.3 - -
Visual (ViT-L/14) 53.2 77.6 85.8 1.0 11.9 53.2 76.5 85.1 1.0 9.1
w/o Audio 59.3 83.1 89.7 1.0 8.1 60.4 83.2 90.2 1.0 5.7
w/o Motion 59.1 83.0 89.8 1.0 8.1 59.5 82.9 89.6 1.0 5.7
w/o Speech 59.2 82.4 88.9 1.0 8.0 60.6 82.8 90.4 1.0 5.4
w/o Visual 58.9 82.5 89.3 1.0 8.2 59.6 82.7 89.9 1.0 6.0
Ours_Ensemble (ViT-B/16) 59.9 82.8 89.3 1.0 8.1 60.7 82.7 90.2 1.0 5.6
w/o Audio 61.8 83.4 90.1 1.0 8.5 61.8 83.7 90.5 1.0 5.7
w/o Motion 62.5 83.7 90.6 1.0 8.7 63.5 83.9 90.6 1.0 5.7
w/o Speech 63.8 84.2 90.6 1.0 8.3 64.5 84.7 90.8 1.0 5.4
w/o Visual 62.3 82.5 90.2 1.0 9.0 62.6 83.9 90.5 1.0 5.9
Ours_Ensemble (ViT-L/14) 65.3 85.3 91.7 1.0 7.9 66.0 86.0 91.7 1.0 5.0
w/o Audio 59.4 83.1 89.2 1.0 7.5 59.4 84.1 90.1 1.0 6.3
w/o Motion 59.5 83.5 89.1 1.0 8.3 58.8 83.0 89.8 1.0 6.2
w/o Speech 60.6 83.8 89.8 1.0 6.9 61.9 84.6 91.0 1.0 5.5
w/o Visual 59.9 83.3 89.7 1.0 7.5 59.8 82.6 90.2 1.0 6.2
Ours_E2E (ViT-B/16) 62.1 84.8 90.7 1.0 6.5 63.5 85.6 91.6 1.0 5.6
w/o Audio 61.3 83.3 89.6 1.0 8.3 60.6 82.3 89.9 1.0 6.4
w/o Motion 62.4 84.0 90.3 1.0 8.7 62.3 84.4 90.7 1.0 5.8
w/o Speech 64.5 85.2 90.5 1.0 7.0 64.3 85.1 91.1 1.0 5.4
w/o Visual 61.6 82.2 89.4 1.0 8.2 62.8 83.1 90.1 1.0 6.6
Ours_E2E (ViT-L/14) 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1

over Hun Yuan_tvr by 4.2%. As reported in Table 4, M2HF
remarkably outperforms the state-of-the-art method by 5.3%
for DiDeMo. Table 5 demonstrates comparable improvement
performance on ActivityNet compared to Hun Yuan_tvr by
2.2% on V2T task. To maintain the fairness of the experi-
ment, the multi-modal features fed into MMT are the same
as M2HF. According to Table 1 to Table 5, we can find that
compared with the MMT, M2HF significantly outperforms
10.1%, 8.2%, 3.5%, 4.2%, and 0.7% for MSRVTT, MSVD,
LSMDC, DiDeMo, and ActivityNet, respectively. M2HF can
better fuse multi-modal features when some of these features
are weak and some are powerful. All the quantitative results
consistently illustrate the superiority of M2HF.

Fig. 3 shows two qualitative comparison examples, which
show that only using visual modality is not enough to represent
videos well. In contrast, our multi-modal complement method
provides multi-modal cues to obtain more accurate results.
For the first example, images are helpful in matching the
“baby” word. The harmonica sound made by this baby and
the text information from off-screen sound can be associated
with “harmonica”. The baby’s movements are matched with
“swirling back” and “forth dancing”. The result retrieved via

the visual-based method CLIP4clip is completely unrelated
to the text. The result retrieved via MMT can only retrieve
“baby”. In the second example, “little boy” corresponds to
a semantic visual target. The keywords “mouthwash” and
“taste” in the text match the relevant tokens in the caption text.
The “crying” sound made by this little boy is captured with
the help of audio signals. His moving figures are related to
“walk out of”. However, the visual-based method CLIP4clip
and MMT can only retrieve “a little boy”.

M2HF pioneers the use of a more interpretable early-fusion
technique in video retrieval tasks and the use of a better
late fusion way to fuse different-branch components, which
significantly improves the performance.

4.3 Ablation Studies

Effect of multi-branch strategy. As reported in Table 6 - Ta-
ble10, detailed ablation studies for each dataset are performed
to prove that every modality of each branch contributes to
retrieving the correct results. Specifically, “Audio”, “Motion”,
“Speech”, and “Visual” are the performance using only the
respective branch. And “w/o Audio”, “w/o Motion”, “w/o
Speech”, and “w/o Visual” are the performance of models
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Table 7 Ablation studies on MSVD dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Audio (ViT-B/16) 55.0 82.4 89.4 1.0 7.9 61.3 80.8 90.2 1.0 4.7
Motion (ViT-B/16) 55.4 82.7 89.4 1.0 7.8 61.2 82.7 90.7 1.0 5.3
Visual (ViT-B/16) 54.9 82.4 89.6 1.0 7.8 63.1 82.0 90.4 1.0 5.3
Audio (ViT-L/14) 58.2 83.6 89.9 1.0 7.6 61.8 83.6 91.8 1.0 3.8
Motion (ViT-L/14) 58.3 83.3 89.4 1.0 7.8 64.3 85.8 91.2 1.0 3.9
Visual (ViT-L/14) 57.2 82.7 89.2 1.0 8.1 59.4 80.4 89.6 1.0 4.6
w/o Audio 59.9 85.2 91.0 1.0 6.7 67.8 86.9 93.6 1.0 3.8
w/o Motion 58.7 84.6 90.6 1.0 7.0 65.8 84.5 91.9 1.0 3.9
w/o Visual 59.9 85.1 90.9 1.0 6.7 67.2 85.7 93.3 1.0 3.6
Ours_Ensemble (ViT-B/16) 61.7 86.1 91.5 1.0 6.3 69.1 87.3 93.9 1.0 3.4
w/o Audio 63.9 86.4 91.6 1.0 6.2 68.2 87.6 94.5 1.0 3.0
w/o Motion 63.9 86.4 91.7 1.0 6.3 67.9 86.3 94.0 1.0 3.1
w/o Visual 64.4 86.9 91.9 1.0 6.0 70.1 88.4 94.5 1.0 2.8
Ours_Ensemble (ViT-L/14) 67.1 88.1 92.7 1.0 5.5 72.1 89.3 95.5 1.0 2.6
w/o Audio 60.2 85.1 91.1 1.0 6.6 66.7 85.4 94.0 1.0 3.1
w/o Motion 59.3 84.6 90.8 1.0 6.8 66.7 85.4 94.0 1.0 3.1
w/o Visual 60.7 85.2 91.0 1.0 6.5 70.7 89.3 93.6 1.0 2.9
Ours_E2E (ViT-B/16) 62.7 86.3 91.7 1.0 6.0 73.3 90.6 94.3 1.0 2.7
w/o Audio 64.7 86.9 91.6 1.0 5.9 72.1 90.4 94.5 1.0 3.0
w/o Motion 64.5 86.7 91.7 1.0 7.0 65.8 85.7 93.3 1.0 3.5
w/o Visual 64.5 86.8 91.9 1.0 6.0 75.7 91.3 96.0 1.0 2.5
Ours_E2E (ViT-L/14) 68.6 88.7 92.9 1.0 5.1 75.7 91.0 96.3 1.0 2.6

using all branches except for the relevant branch. There is
no “Speech” branch in the MSVD dataset since there are no
audio signals for those videos. Moreover, its “Audio” branch
works depended on our proposed multi-modal completion
strategy.

To model the relationship between video features and text
features, some simple and direct fusion methods can be
applied to fuse multi-modal features from video, which may
result in multi-modal confusion. The superiority of our multi-
branch way is shown in this paper. Table 11 has explored th
effect of multi-branch strategy on MSR-VTT 1K dataset. The
general one-branch way is fusing all multi-modal features
to obtain a joint video representation, which is then used
to make a relationship with text features. Three common
approaches are explored including “Multiply”, “Average”,
and “Add”. As reported in Table 11, video features, which
are obtained in these ways, to make connections with text
features remarkably decrease performance compared to our
proposed “Multi-branch” way. The reason is that the way
to fuse all features yields summarized features, which may
result in multi-modal confusion. Our proposed method can
make full use of every modality feature.

Only one branch. For the case of using only one branch
(see the top two groups of Table 6 -Table10), we can see
that the performance of the “Speech” branch is poorer than
that of other branches. This is attributed to its absence from
many videos and the limited effect of the Jaccard method,
and exploring a better method for the “Speech” branch is

left to our future direction. However, text cues from videos
and caption text queries are the same modality, which means
that their relationships are most intimate. Furthermore, this
branch can provide abundant abstract information for video
retrieval, which cannot be provided by other branches. Some
representative examples of the “Speech” branch are shown in
Fig. 4, the visual images of these examples are people talking
about something very abstract, such as “populace”, “oxide”,
“space project adan”, and “stiff person syndrome”, which
cannot understand from other modalities. This phenomenon is
common for text-video retrieval tasks. Compared to only using
the “Visual” branch, only using the “Audio” and “Motion”
branches can also obtain similar even better performance,
which implies that the guidance mechanism provides different
perspectives such as sound and moving objects for more
fine-grained retrieval results.

Without one branch. Other experiments in Table 6-
Table 10 are ablation studies removing “Audio”, “Motion”,
“Speech”, and “Visual” branches to verify their impact on
the performance of relevant models. First, we can see that
all these modalities make their contributions to improving
the performance of final retrieval results. Then, different
datasets prefer different modalities since the focus of each
dataset may be different. However, we are still interested in
figuring out which modality makes the greatest contribu-
tion to the T2V and V2T task tasks. Therefore, we conduct
a statistical analysis as reported in Fig. 5. For each group
experiment in Table 6-Table 10, e.g., “w/o Audio”, “w/o
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Table 8 Ablation studies on LSMDC dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Audio (ViT-B/16) 21.6 39.0 48.7 11.0 63.2 22.1 39.4 48.4 12.0 57.2
Motion (ViT-B/16) 22.7 40.0 49.3 11.0 60.8 23.2 40.6 48.8 12.0 55.4
Speech (ViT-B/16) 0.6 0.8 0.8 - - 0.2 0.5 0.7 - -
Visual (ViT-B/16) 23.8 40.6 51.2 10.0 59.8 23.0 41.6 51.1 10.0 50.9
Audio (ViT-L/14) 23.4 42.9 51.6 9.0 58.3 22.8 43.8 52.3 9.0 49.6
Motion (ViT-L/14) 24.8 44.7 53.0 8.0 53.0 26.3 43.8 53.8 8.0 45.8
Speech (ViT-L/14) 0.6 0.8 0.8 - - 0.2 0.5 0.7 - -
Visual (ViT-L/14) 25.8 45.4 54.8 7.0 54.7 25.4 47.5 55.5 7.0 44.9
w/o Audio 28.7 45.4 56.7 7.0 46.8 28.3 46.8 56.3 7.0 39.9
w/o Motion 27.3 45.1 55.8 7.5 49.0 26.9 45.6 55.6 7.0 42.0
w/o Speech 30.2 46.8 58.2 7.0 43.2 29.8 48.1 57.8 6.0 37.2
w/o Visual 26.8 43.5 53.7 9.0 51.0 27.4 44.2 53.3 8.0 46.3
Ours_Ensemble (ViT-B/16) 30.2 46.8 58.2 7.0 43.2 29.8 48.1 57.8 6.0 37.2
w/o Audio 32.0 53.3 61.8 5.0 38.5 31.9 54.3 62.6 4.0 31.9
w/o Motion 30.5 51.5 60.4 5.0 42.8 30.1 54.0 61.6 4.0 33.7
w/o Speech 33.6 55.8 64.1 4.0 34.8 33.9 56.9 64.5 3.0 28.4
w/o Visual 29.4 50.8 59.2 5.0 41.4 30.2 51.0 59.3 5.0 35.9
Ours_Ensemble (ViT-L/14) 33.9 55.9 64.2 4.0 34.8 34.0 57.1 64.6 3.0 28.3
w/o Audio 25.3 42.7 52.1 9.0 53.5 27.0 44.2 53.1 9.0 46.3
w/o Motion 25.0 42.6 50.5 10.0 55.0 24.0 41.5 50.4 10.0 50.7
w/o Speech 27.1 44.9 53.0 9.0 46.7 26.9 45.5 53.6 8.0 43.2
w/o Visual 26.7 42.9 51.9 9.0 53.5 27.0 43.2 53.2 8.0 46.3
Ours_E2E(ViT-B/16) 30.3 46.4 55.9 7.0 44.8 29.1 46.8 56.3 6.0 39.6
w/o Audio 28.3 47.9 57.3 6.0 47.3 29.5 48.1 58.5 6.0 41.3
w/o Motion 27.7 45.6 56.3 7.0 46.9 28.4 45.8 54.4 8.0 46.3
w/o Speech 31.1 48.8 58.4 6.0 44.5 30.4 48.4 59.4 6.0 38.1
w/o Visual 27.2 45.0 56.1 7.0 49.8 28.7 47.7 57.1 6.0 41.5
Ours_E2E (ViT-L/14) 31.8 53.2 62.2 4.0 36.9 31.6 53.3 63.6 5.0 30.8

Motion”, “w/o Speech”, “w/o Visual”, and “Ours_E2E (ViT-
B/16)” in Table 6-Table 10, we record the relevant branch that
contributes the most according to the rule with the most per-
formance (R@1) degradation compared to the other branches.
Specifically, we count the frequency of each branch being
the greatest contribution from a total of 20 groups for five
datasets. For example, in Table 6, the 9th - the 13th lines rep-
resent Ours_Ensemble (ViT-B/16) group. The performance
of Ours_Ensemble (ViT-B/16) is 59.9%, however, the worst
ablation branch performance is “w/o Visual” (58.9%). There-
fore, the visual branch has the most contribution to this group.
The frequency for branch “Visual” will add 1. As shown
in Fig. 5, the “Motion” branch provides the greatest con-
tribution in either T2V or V2T task. The reason might be
that motion features are available for all examples and the
guidance of motion features can surely capture the moving
objects matching the verb phrase in text queries. “Visual”
and “Audio” branchs are in the second place for T2V task
and V2T task respectively. This is the same as the fact that
human perception is most dependent on visual and audio
perceptions. The poor performance of “Speech” is attributed
to its absence from many videos, but its contributions cannot

be ignored. To summarize, multi-modal perception is indeed
more reasonable and effective than only using one modality.

Effect of multi-modal strategy. As reported in Table
6-Table 10, ablation experiments are conducted to evaluate
the effect of each modality in M2HF. “w/o Audio”, “w/o
Motion”, “w/o Speech”, and “w/o Visual” represents remov-
ing the relevant modality from M2HF. Quantitative results
demonstrate that each modality contributes to the performance
of text-video retrieval. Fig. 6 shows the qualitative studies
of our proposed method. “Audio”, “Motion”, “Speech”, and
“Visual” are the effect of only using corresponding modality
for T2V retrieval. The green and red boxes represent the true
and false retrieval results, respectively. These four examples
explain the advantages of each modality. For the first col-
umn, the “Audio” branch can catch the instrument’s sound
source with the guidance of an audio signal, however, other
modalities cannot provide the same contribution. The second
example utilizes the motion features of jumping to predict the
right retrieval, where the “Motion” branch can pay attention
to the moving objects. The third one shows the effect of the
“Speech” branch, and there are six same keywords between
caption text tokens and speech text tokens, including “wheel”,
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Table 9 Ablation studies on DiDeMo dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Audio (ViT-B/16) 46.6 74.8 82.2 2.0 13.5 49.8 73.8 82.8 2.0 9.7
Motion (ViT-B/16) 47.0 73.9 81.3 2.0 13.4 46.3 73.1 82.0 2.0 10.1
Speech (ViT-B/16) 1.9 3.2 3.6 - - 0.4 1.3 1.7 - -
Visual (ViT-B/16) 46.4 74.4 81.4 2.0 13.4 47.0 73.2 82.7 2.0 9.9
Audio (ViT-L/14) 48.3 75.0 83.3 2.0 12.6 50.7 76.2 84.2 1.0 9.3
Motion (ViT-L/14) 47.9 74.0 82.2 2.0 12.4 48.6 74.6 84.2 2.0 9.5
Speech (ViT-L/14) 1.9 3.2 3.6 - - 0.4 1.3 1.7 - -
Visual (ViT-L/14) 48.9 73.7 82.5 2.0 12.9 49.1 74.9 84.8 2.0 9.7
w/o Audio 53.1 78.3 84.4 1.0 10.9 52.4 77.0 85.1 1.0 7.9
w/o Motion 52.8 78.1 84.3 1.0 11.2 53.5 77.2 84.9 1.0 8.3
w/o Speech 54.8 79.5 85.3 1.0 10.0 56.0 79.0 86.1 1.0 7.3
w/o Visual 52.3 78.0 84.3 1.0 10.9 53.7 77.4 84.7 1.0 8.1
Ours_Ensemble (ViT-B/16) 54.8 79.5 85.3 1.0 10.0 56.0 79.0 86.1 1.0 7.3
w/o Audio 55.2 77.4 85.3 1.0 10.6 55.9 78.4 87.4 1.0 7.9
w/o Motion 54.1 77.8 85.8 1.0 10.9 55.8 79.0 87.5 1.0 8.0
w/o Speech 56.8 79.6 87.2 1.0 9.6 58.4 80.6 88.8 1.0 7.3
w/o Visual 54.5 78.3 86.3 1.0 10.4 55.7 79.2 87.2 1.0 7.8
Ours_Ensemble (ViT-L/14) 57.1 79.6 87.3 1.0 9.6 58.4 80.6 88.8 1.0 7.3
w/o Audio 54.5 78.0 84.4 1.0 10.9 52.8 77.0 85.5 1.0 8.0
w/o Motion 52.9 77.8 84.1 1.0 11.2 53.6 77.2 85.2 - 1.0 8.3
w/o Speech 56.3 79.2 85.1 1.0 10.0 56.4 78.8 86.3 1.0 7.3
w/o Visual 53.7 77.8 83.8 1.0 10.8 54.3 77.4 85.2 1.0 8.1
Ours_E2E (ViT-B/16) 56.9 79.3 85.3 1.0 9.9 56.4 78.8 86.3 1.0 7.3
w/o Audio 55.9 78.0 86.1 1.0 10.1 56.0 78.6 88.1 1.0 7.8
w/o Motion 54.1 77.7 85.9 1.0 10.8 55.4 78.9 87.5 1.0 8.0
w/o Speech 57.1 79.8 87.8 1.0 9.2 58.9 80.7 89.5 1.0 7.2
w/o Visual 54.5 77.9 86.6 1.0 9.9 56.4 79.2 87.7 1.0 7.7
Ours_E2E (ViT-L/14) 57.4 79.8 87.8 1.0 9.2 58.9 80.7 89.5 1.0 7.2

“bike”, “frame”, “wrench”, “nut”, and “axle”. This branch
is really helpful for those cases containing lots of abstract
nouns. For the last example, there are no sound and moving
objects. Therefore, “ocean floor” and “scuba divers” visual
contents are detected by the “Visual” branch. To this end,
quantitative and qualitative results illustrate the superiority
of multi-modal for TVR.

Effect of early fusion. Instead of directly using audio and
motion features to compute the similarity with text features,
in this work, we apply early fusion to fuse these two kinds of
features with visual features respectively, as shown in the left
bottom of Fig. 2. The starting point is that there exists a large
gap in representation ability between visual features extracted
by CLIP and audio and motion features extracted by relatively
weak models, and powerful visual features are efficiently
augmented through this guidance-based fusion for focusing
different aspects with the help of other modal features.

To evaluate the effectiveness of early fusion, an ablation
study is conducted in Table 12 on MSR-VTT 1k dataset.
From this table, we can find that the retrieval result of di-
rectly using original audio and motion features without early
fusion is 59.4%, which is significantly lower than that of

the proposed method (66.0%). The results prove that early
fusion can improve motion features and audio features and
directly using audio and motion features to compute the sim-
ilarity with text features will harm the performance of the
relative branch. The reason is that weak motion features and
audio features extracted by relatively weak pre-trained mod-
els fuse with powerful visual features extracted by powerful
CLIP are efficiently augmented through this guidance-based
fusion for focusing on the moving objects and the content
of making sounds. Early fusion can effectively exploit the
comprehensiveness of multi-modal features to achieve better
performance. Using equally powerful multi-modal features
will be explored in future work.

Effect of fusion strategy of early fusion. The effect of
early fusion strategies for each branch is also worth studying.
As shown in Table 13, we explore the effect of the fusion
strategy of early fusion on MSR-VTT 1k dataset. “AM_MD”
represents that early fusion for “Audio” and “Motion” are MFB
and dual transformer respectively, and this setting obtains the
best performance (66.0%). Three other settings include that
early fusion for “Audio” and “Motion” both are MFB, which
is denoted as “AM_MM” (65.8%), early fusion for “Audio”
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Table 10 Ablation studies on ActivityNet dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Audio (ViT-B/16) 46.0 74.5 84.4 2.0 7.7 45.5 73.2 83.9 2.0 7.8
Motion (ViT-B/16) 46.1 74.4 84.2 2.0 7.8 45.8 73.3 83.8 2.0 8.2
Speech (ViT-B/16) 2.3 5.1 7.8 - - 3.4 7.1 9.8 - -
Visual (ViT-B/16) 46.6 74.5 84.7 2.0 7.4 45.6 73.0 83.7 2.0 7.7
Audio (ViT-L/14) 47.1 74.2 84.4 2.0 8.4 47.1 75.2 85.4 2.0 6.7
Motion (ViT-L/14) 47.5 75.8 85.0 2.0 8.1 48.4 76.3 86.1 2.0 7.2
Speech (ViT-L/14) 2.3 5.1 7.8 - - 3.4 7.1 9.8 - -
Visual (ViT-L/14) 45.7 73.2 83.1 2.0 9.3 46.0 73.0 83.9 2.0 7.6
w/o Audio 54.7 80.3 89.0 1.0 5.2 54.4 80.3 89.1 1.0 5.1
w/o Motion 53.7 80.2 88.6 1.0 5.4 53.0 79.1 88.4 1.0 5.4
w/o Speech 56.2 81.3 89.5 1.0 5.2 55.1 80.6 89.2 1.0 5.1
w/o Visual 54.3 80.7 88.8 1.0 5.5 53.8 79.9 88.8 1.0 5.4
Ours_Ensemble (ViT-B/16) 56.2 81.3 89.5 1.0 5.2 55.1 80.6 89.2 1.0 5.1
w/o Audio 55.0 80.7 88.6 1.0 6.0 56.1 81.3 89.9 1.0 4.8
w/o Motion 51.7 78.0 86.8 1.0 7.3 52.5 78.4 87.8 1.0 5.8
w/o Speech 56.0 80.8 88.5 1.0 6.3 56.3 81.3 89.7 1.0 5.0
w/o Visual 54.5 80.6 88.4 1.0 6.3 55.8 81.3 89.8 1.0 4.9
Ours_Ensemble (ViT-L/14) 57.3 81.9 89.4 1.0 5.8 58.0 82.6 90.7 1.0 4.6
w/o Audio 54.6 80.4 89.4 1.0 5.3 54.3 79.8 89.0 1.0 5,2
w/o Motion 53.1 79.6 88.5 1.0 5.5 52.7 79.0 88.3 1.0 5.5
w/o Speech 55.8 81.0 89.6 1.0 5.2 55.2 80.6 89.0 1.0 5.2
w/o Visual 54.0 80.5 89.1 1.0 5.4 54.0 79.8 89.0 1.0 5.3
Ours_E2E (ViT-B/16) 57.1 82.0 90.5 1.0 4.8 57.0 81.8 90.2 1.0 4.7
w/o Audio 51.9 76.9 85.0 1.0 11.1 53.7 78.2 87.0 1.0 7.8
w/o Motion 51.0 75.9 84.9 1.0 12.3 52.9 76.5 86.6 1.0 8.6
w/o Speech 53.3 77.6 84.5 1.0 11.1 52.5 77.3 84.5 1.0 11.1
w/o Visual 53.4 79.1 85.6 1.0 10.8 52.1 77.5 87.7 1.0 8.3
Ours_E2E (ViT-L/14) 56.4 81.1 89.1 1.0 5.9 57.4 82.2 90.6 1.0 4.6

Table 11 Effect of multi-branch strategy on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

M2HF_multiply 49.1 74.7 84.7 2.0 13.0 49.0 75.0 84.1 2.0 10.2
M2HF_average 52.9 77.3 85.7 1.0 11.4 53.0 78.0 86.3 1.0 8.6
M2HF_add 50.7 76.6 85.2 1.0 12.7 52.1 76.9 85.3 1.0 11.4
M2HF_multi_branch 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1

Table 12 Effect of early fusion on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

without_early_fusion 59.4 82.7 89.5 1.0 7.6 59.4 82.7 90.0 1.0 5.8
with_early_fusion 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1

Table 13 Effect of fusion strategy of early fusion on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

AM_MM 65.8 86.8 92.0 1.0 5.7 65.5 87.2 91.6 1.0 4.7
AD_MM 66.0 85.9 91.8 1.0 6.7 65.4 86.8 92.0 1.0 5.0
AD_MD 65.6 85.4 91.3 1.0 7.3 65.2 85.7 91.7 1.0 5.5
AM_MD 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1
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Table 14 Ablation studies of MMBL on MSR-VTT 1K dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Average 65.5 84.9 91.3 1.0 7.8 64.4 86.1 92.0 1.0 5.5
Element-wise adding 65.8 84.8 91.2 1.0 7.8 64.5 85.9 91.6 1.0 5.5
Element-wise maximizing 65.3 84.7 91.1 1.0 8.2 64.6 86.4 91.5 1.0 5.5
Element-wise minimizing 66.0 86.3 91.5 1.0 6.7 65.7 86.2 91.9 1.0 5.1

Table 15 Effect of multi-modal completion on DiDeMo dataset.

Methods T2V V2T
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Without_Completion 56.5 78.9 87.1 1.0 10.0 57.7 79.9 88.1 1.0 7.3
With_Completion 57.4 79.8 87.8 1.0 9.2 58.9 80.7 89.5 1.0 7.2

and “Motion” both are dual transformer, which is denoted
as “AD_MD” (65.6%), and early fusion for “Audio” and
“Motion” are dual transformer and MFB respectively, which
is denoted as “AD_MM” (66.0%). We can see that different
early fusion settings obtain similarly improved performance
in Table 13. The subtle differences identify the robustness
of different early fusion strategies for different branches.
However, they all achieve better performance compared to
the setting without early fusion (59.4%) in the first row of
Table 12. Why does using MFB for audio-visual fusion and
using a dual transformer for animation fusion achieve better
results? The reason might be that the MFB strategy has a
strong ability to fuse local audio-visual features to obtain
local fusion features. However, the dual transformer strategy
is based on a self-attention mechanism. It has strong modeling
capabilities for moving objects among sequences. Taking time
as the axis, audio-visual fusion has more local properties and
motion-visual fusion has more global properties. In other
words, audio features are more relevant to images in nearby
frames and less relevant to further frames, such as a barking
dog. However, dual transformer architecture may damage
the audio-visual fusion. Motion features are relevant to all
visual frames, such as a moving car. However, MFB can only
fuse the local motion-visual features, which may damage the
performance.

Ablation study for MMBL. To explore the best way
to late fuse all branches, an ablation study of MMBL on
MSR-VTT 1K dataset is conducted, and the numerical results
are reported in Table 14 for the E2E training. MMBL is a
multi-modal balance loss for training the model in an end-
to-end manner. There are at least four ways to late fuse
all branches, including taking the average value (65.5%),
taking the element-wise maximum value (65.3%), taking the
element-addition value (65.8%), and taking the element-wise
minimum value (66.0%). Finally, we introduce a multi-modal

balance loss by taking the element-wise minimum of each
branch according to its superior performance.

Effect of multi-modal completion. Due to the existence
of modality absence, a multi-modal completion method is
proposed in our work. When removing the multi-modal
completion (in Sec. 3.3), Table 15 illustrates the effect of
multi-modal completion. The audio signal is not available
to some samples in DiDeMo. Therefore, the multi-modal
completion method is beneficial to mitigate modality absence.
When removing the multi-modal completion, the retrieval
performance drops from 57.4% to 56.5% on DiDeMo.

Analysis of computation cost. 8 A100 GPUs are used to
train M2HF on all datasets. On MSRVTT, the training time
of M2HF is 3.4 hours per epoch, and CLIP4Clip is 2.5 hours
per epoch. The inference of each branch is independent and is
optimized as a multi-branch parallel inference. Therefore, the
inference time per video on an A100 GPU of M2HF (38.7ms)
depends on the longest branch, which is not so much longer
than CLIP4Clip (24.4ms). The average GPU memory cost is
27.5G, compared with CLIP4Clip (20.8G).

5 Conclusions
Based on the multi-modal nature of videos, in this paper,
we proposed a novel multi-branch multi-modal hybrid fusion
network for text-video retrieval. The core idea is to explore
fine-grained multi-modal cues in a multi-branch way, and
M2HF can also leverage the powerful knowledge from a pre-
trained text-image retrieval model (i.e., CLIP). Two training
strategies are exploited and implemented: end-to-end training
with a multi-modal balance loss and ensemble training with a
multi-modal balance fusion. Extensive quantitative and quali-
tative comparisons and ablation experiments are conducted to
validate our method. M2HF has achieved state-of-the-art per-
formance for TVR on MSR-VTT, MSVD, LSMDC, DiDeMo,
and ActivtiyNet. In the future, we would like to improve the
multi-modality abilities with more features, such as optical
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flow.

Acknowledgements

5.1 Funding

This work was partially supported by the National Natural
Science Foundation of China (62102418 and 62172415), the
CCF-Tencent Rhino-Bird Research Fund (RAGR20210124),
and the Beijing Science and Technology Plan Project
(Z231100005923033).

5.2 Authors’ contributions

Conceptualization, S.L., S.C., and K.Y.; methodology, S.L.,
S.C., and W.Q.; software, S.L., M.Z., C.C., and Z.Z.; val-
idation, S.C., J.K., and M.Z.; formal analysis, S.L., W.Q.,
and Z.Z.; writing—original draft preparation, S.L., W.Q.,
and M.Z.; writing—review and editing, S.L., S.C., C.C., and
D.Y.; visualization, J.K. and Z.Z.; supervision, K.Y., W.Q.,
and D.Y.;

Declaration of competing interest

The authors have no competing interests.

References
[1] S. Alghowinem, R. Göcke, J. F. Cohn, M. Wagner, G. Parker,

and M. Breakspear. Cross-cultural detection of depression
from nonverbal behaviour. IEEE International Conference
and Workshops on Automatic Face and Gesture Recognition,
1:1–8, 2015. 3

[2] L. Anne Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell,
and B. Russell. Localizing moments in video with natural
language. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5803–5812, 2017. 7

[3] P. Atrey, M. Kankanhalli, and R. Jain. Information assimilation
framework for event detection in multimedia surveillance
systems. Multimedia Systems, 12:239–253, 12 2006. 3

[4] S. Ayache, G. Quénot, and J. Gensel. Classifier fusion for svm-
based multimedia semantic indexing. In European Conference
on Information Retrieval, 2007. 3

[5] M. Bain, A. Nagrani, G. Varol, and A. Zisserman. Frozen
in time: A joint video and image encoder for end-to-end
retrieval. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1708–1718, 2021. 4, 9

[6] A. Bendjebbour, Y. Delignon, L. Fouque, V. Samson, and
W. Pieczynski. Multisensor image segmentation using
dempster-shafer fusion in markov fields context. IEEE Trans-
actions on Geoscience and Remote Sensing, 39:1789–1798,
2001. 2

[7] S. Cao, B. Wang, W. Zhang, and L. Ma. Visual consensus
modeling for video-text retrieval. In Proceedings of the AAAI

Conference on Artificial Intelligence, pages 167–175, 2022. 1,
9

[8] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 4724–4733, 2017. 9

[9] D. Chen and W. B. Dolan. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of theannual meeting of
the association for computational linguistics: human language
technologies, pages 190–200, 2011. 7

[10] G. Chen, S. Chai, G.-B. Wang, J. Du, W. Zhang, C. Weng,
D. Su, D. Povey, J. Trmal, J. Zhang, M. Jin, S. Khudanpur,
S. Watanabe, S. Zhao, W. Zou, X. Li, X. Yao, Y. Wang,
Y. Wang, Z. You, and Z. Yan. Gigaspeech: An evolving,
multi-domain asr corpus with 10, 000 hours of transcribed
audio. In Interspeech, 2021. 9

[11] H. Chen, Y. Deng, S. Cheng, Y. Wang, D. Jiang, and H. Sahli.
Efficient spatial temporal convolutional features for audiovisual
continuous affect recognition. In Proceedings of the Inter-
national on Audio/Visual Emotion Challenge and Workshop,
2019. 2

[12] X. Cheng, H. Lin, X. Wu, F. Yang, and D. Shen. Improving
video-text retrieval by multi-stream corpus alignment and dual
softmax loss. arXiv preprint arXiv:2109.04290, 2021. 4, 7, 9

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, pages 4171–4186, 2019. 4

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale.
Proceedings of the International Conference on Learning
Representations, 2021. 4

[15] M. Dzabraev, M. Kalashnikov, S. Komkov, and A. Petiushko.
Mdmmt: Multidomain multimodal transformer for video re-
trieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3363, 2021. 1, 3

[16] H. Fang, P. Xiong, L. Xu, and Y. Chen. Clip2video: Mas-
tering video-text retrieval via image clip. arXiv preprint
arXiv:2106.11097, 2021. 4

[17] H. Fang, P. Xiong, L. Xu, and W. Luo. Transferring image-clip
to video-text retrieval via temporal relations. IEEE Transac-
tions on Multimedia, pages 1–14, 2022. 1

[18] V. Gabeur, C. Sun, K. Alahari, and C. Schmid. Multi-modal
transformer for video retrieval. In Proceedings of the European
Conference on Computer Vision, page 214–229, 2020. 1

[19] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter. Audio
set: An ontology and human-labeled dataset for audio events.
In Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 776–780, 2017. 4, 9



18 S. Liu, W. Quan, et al.

[20] M. Gönen and E. Alpaydın. Multiple kernel learning algo-
rithms. Journal of Machine Learning Research, 12:2211–2268,
2011. 3

[21] S. K. Gorti, N. Vouitsis, J. Ma, K. Golestan, M. Volkovs,
A. Garg, and G. Yu. X-pool: Cross-modal language-video
attention for text-video retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5006–5015, 2022. 4, 9

[22] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang. Conformer:
Convolution-augmented transformer for speech recognition.
ArXiv, 2020. 9

[23] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, C. Moore, M. Plakal, D. Platt, R. A. Saurous,
B. Seybold, M. Slaney, R. Weiss, and K. Wilson. Cnn archi-
tectures for large-scale audio classification. In Proceedings
of IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 131–135, 2017. 4, 9

[24] F. Hu, A. Chen, Z. Wang, F. Zhou, J. Dong, and X. Li.
Lightweight attentional feature fusion: A new baseline for text-
to-video retrieval. In Proceedings of the European Conference
on Computer Vision, pages 444–461, 2022. 4, 9

[25] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7132–7141, 2018. 2, 5, 6

[26] J.-H. Kim, K.-W. On, W. Lim, J. Kim, J.-W. Ha, and B.-
T. Zhang. Hadamard product for low-rank bilinear pooling.
In Proceedings of the International Conference on Learning
Representations, pages 247–263, 2017. 2

[27] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. Carlos Niebles.
Dense-captioning events in videos. In Proceedings of the IEEE
International Conference on Computer Vision, pages 706–715,
2017. 7

[28] A. Kunitsyn, M. Kalashnikov, M. Dzabraev, and A. Ivaniuta.
Mdmmt-2: Multidomain multimodal transformer for video
retrieval, one more step towards generalization. arXiv preprint
arXiv:2203.07086, 2022. 3

[29] Z.-z. Lan, L. Bao, S.-I. Yu, W. Liu, and A. Hauptmann.
Multimedia classification and event detection using double
fusion. Multimedia Tools and Applications, 71, 07 2014. 3

[30] C. Lin, A. Wu, J. Liang, J. Zhang, W. Ge, W.-S. Zheng, and
C. Shen. Text-adaptive multiple visual prototype matching
for video-text retrieval. In Proceedings of the International
Conference on Neural Information Processing Systems, 2022.
4, 9

[31] Y. Liu, S. Albanie, A. Nagrani, and A. Zisserman. Use what you
have: Video retrieval using representations from collaborative
experts. arXiv preprint arXiv:1907.13487, 2019. 7

[32] H. Luo, L. Ji, M. Zhong, Y. Chen, W. Lei, N. Duan, and T. Li.
Clip4clip: An empirical study of clip for end to end video clip
retrieval. arXiv preprint arXiv:2104.08860, 2021. 1

[33] Z. Ma, F. Ma, B. Sun, and S. Li. Hybrid mutimodal fusion for
dimensional emotion recognition. Proceedings of the 2nd on

Multimodal Sentiment Analysis Challenge, 2021. 2
[34] S. Min, W. Kong, R.-C. Tu, D. Gong, C. Cai, W. Zhao, C. Liu,

S. Zheng, H. Wang, Z. Li, et al. Hunyuan_tvr for text-video
retrivial. arXiv preprint arXiv:2204.03382, 2022. 1

[35] M. Morales, S. Scherer, and R. Levitan. A linguistically-
informed fusion approach for multimodal depression detec-
tion. In Proceedings of the Fifth Workshop on Computational
Linguistics and Clinical Psychology: From Keyboard to Clinic,
pages 13–24, 2018. 3

[36] J. Ni, X. Ma, L. Xu, and J. Wang. An image recognition method
based on multiple bp neural networks fusion. In Proceedings
of the International Conference on Information Acquisition,
pages 323–326, 2004. 2

[37] Panayotov, Vassil, C. Guoguo, P. Daniel, and K. Sanjeev.
Librispeech: An asr corpus based on public domain audio
books. In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 5206–5210,
2015. 9

[38] J. Paul. The distribution of the flora of the alpine zone. pages
37–50, 1912. 6

[39] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agar-
wal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,
and I. Sutskever. Learning transferable visual models from
natural language supervision. In Proceedings of the Interna-
tional Conference on Machine Learning, volume 139, pages
8748–8763, 2021. 1

[40] A. Rohrbach, M. Rohrbach, and B. Schiele. The long-short
story of movie description. In German conference on pattern
recognition, pages 209–221. Springer, 2015. 7

[41] H. Shalu, P. M. Harikrishnan, C. Harisankar, A. Das, S. Ma-
jumder, A. Datar, M. SubinMathew, A. Das, and J. Kadiwala.
Depression status estimation by deep learning based hybrid
multi-modal fusion model. ArXiv, abs/2011.14966, 2020. 3

[42] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Early
versus late fusion in semantic video analysis. In Proceedings
of the ACM International Conference on Multimedia, page
399–402, 2005. 2

[43] X. Song, J. Chen, Z. Wu, and Y.-G. Jiang. Spatial-temporal
graphs for cross-modal text2video retrieval. IEEE Transactions
on Multimedia, 24:2914–2923, 2022. 1

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, u. Kaiser, and I. Polosukhin. Attention is all
you need. In Proceedings of the International Conference
on Neural Information Processing Systems, page 6000–6010,
2017. 2

[45] M. Wang, G.-W. Yang, S.-M. Hu, S.-T. Yau, and A. Shamir.
Write-a-video: Computational video montage from themed
text. ACM Transactions on Graphics, 38(6):177:1–177:13,
2019. 2

[46] Q. Wang, Y. Zhang, Y. Zheng, P. Pan, and X.-S. Hua. Disen-
tangled representation learning for text-video retrieval. arXiv
preprint arXiv:2203.07111, 2022. 4, 9

[47] W. Wang, J. Gao, X. Yang, and C. Xu. Learning coarse-



M2HF: Multi-branch Multi-modal Hybrid Fusion for Text-Video Retrieval 19

to-fine graph neural networks for video-text retrieval. IEEE
Transactions on Multimedia, 23:2386–2397, 2021. 1

[48] W. Wang, J. Gao, X. Yang, and C. Xu. Many hands make
light work: Transferring knowledge from auxiliary tasks for
video-text retrieval. IEEE Transactions on Multimedia, pages
1–1, 2022. 1

[49] X. Wang, R. B. Girshick, A. Gupta, and K. He. Non-local
neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7794–7803,
2018. 2

[50] X. Wang, L. Zhu, and Y. Yang. T2vlad: Global-local sequence
alignment for text-video retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5075–5084, 2021. 9

[51] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao,
J. Dambre, and J.-M. Odobez. Deep dynamic neural networks
for multimodal gesture segmentation and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
38:1583–1597, 2016. 2

[52] Z. Wu, L. Cai, and H. Meng. Multi-level fusion of audio
and visual features for speaker identification. In Advances in
Biometrics, volume 3832, pages 493–499, 2006. 3

[53] S. Xie, C. Sun, J. Huang, Z. Tu, and K. P. Murphy. Rethinking
spatiotemporal feature learning: Speed-accuracy trade-offs in
video classification. In Proceedings of the European Confer-
ence on Computer Vision, 2018. 5

[54] H. Xu and T.-S. Chua. Fusion of av features and external infor-
mation sources for event detection in team sports video. ACM
Transactions on Multimedia Computing, Communications,
and Applications, 2:44–67, 2006. 2

[55] H. Xu, W. Liu, J. Liu, M. Li, Y. Feng, Y. Peng, Y. Shi, X. Sun,
and M. Wang. Hybrid multimodal fusion for humor detection.
Proceedings of the 3rd International on Multimodal Sentiment
Analysis Workshop and Challenge, 2022. 3

[56] H. Xu, R. Zeng, Q. Wu, M. Tan, and C. Gan. Cross-modal
relation-aware networks for audio-visual event localization. In
Proceedings of the ACM International Conference on Multi-
media, pages 3893–3901, 2020. 2

[57] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video
description dataset for bridging video and language. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5288–5296, 2016. 7

[58] Y. Yu, J. Kim, and G. Kim. A joint sequence fusion model for
video question answering and retrieval. In Proceedings of the
European Conference on Computer Vision, pages 471–487,
2018. 7

[59] Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized
bilinear pooling with co-attention learning for visual ques-
tion answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1821–1830, 2017. 2

[60] B. Zhang, H. Hu, and F. Sha. Cross-modal and hierarchical
modeling of video and text. In Proceedings of the European
Conference on Computer Vision, pages 374–390, 2018. 7

[61] H. Zhang, Y. Yang, F. Qi, S. Qian, and C. Xu. Robust video-
text retrieval via noisy pair calibration. IEEE Transactions on
Multimedia, pages 1–14, 2023. 1

[62] J.-Q. Zhang, X. Xu, Z.-M. Shen, Z. Huang, Y. Zhao, Y.-P.
Cao, P. Wan, and M. Wang. Write-an-animation: High-level
text-based animation editing with character-scene interaction.
Computer Graphics Forum, 40, 2021. 2

[63] P. Zhang, D. Wang, and H. Lu. Multi-modal visual tracking:
Review and experimental comparison. Computational Visual
Media, 2024. 2, 5


