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ABSTRACT

Audio and visual signals stimulate many audio-visual sen-
sory neurons of persons to generate audio-visual contents,
helping humans perceive the world. Most of the existing
audio-visual event localization approaches focus on gener-
ating audio-visual features by fusing the audio and visual
modalities for final predictions. However, an audio-visual
adjustment mechanism exists in a complicated multi-modal
perception system. Inspired by this observation, we pro-
pose a novel bi-directional modality fusion network (BMFN),
which not only simply fuses audio and visual features, but
also adjusts the fused features to increase their represen-
tativeness with the help of the original audio and visual
contents. The high-level audio-visual features achieved from
two directions with two forward-backward fusion modules
and a mean operation are summarized for the final event
localization. Experimental results demonstrate that our
method outperforms state-of-the-art works in both fully- and
weakly- supervised learning settings. The code is available at
https://github.com/weizequan/BMFN.git.

Index Terms— Event Localization, Bi-Directional, Audio-
Visual Modality Fusion, Multi-Modal Perception System

1. INTRODUCTION

Humans’ multi-modal perception system [1, 2] is really
helpful for scene understanding, where audio-visual sensory
neurons play an important role in generating and adjusting
the audio-visual content. Consequently, audio-visual event
(AVE) localization, which aims to know what and when
audio-visual event occurs in machines (cf. Fig. 1), should be
studied.

Many recent learning-based approaches have been pro-
posed to solve the AVE localization tasks. Tian et al. [3] pro-
posed a CNN model, which consists of an audio-guided vi-
sual attention block and a dual multi-modal residual block, to
fuse the audio and visual features trained on the shared AVE
dataset. Lin et al. [4] proposed a sequence-to-sequence dual
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Fig. 1. An example of the audio-visual event localization:
an audio-visual event is both audible and visible event, other-
wise, it will be regarded as background. The goal of the task
is to predict the segment-level event.

network, which learns global and local audio-visual features
to improve the model’s capacity. Ramaswamy [5] succes-
sively explored the inter- and intra-modality interactions and
then concatenated them as the final audio-visual fusion fea-
tures for AVE localization. Similarly, Xu et al. [6] learned the
audio-visual relationship via the encoder of transformer [7, 8].
These works intended to utilize the audio and visual signals
by following only the forward direction to generate the fi-
nal fused features. However, according to mammals’ multi-
modal perception system, an adjustment mechanism [9] for
enhancing the audio-visual fusion signals also exists to obtain
more information and thus perceive scenes accurately.
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Fig. 2. Mechanism of bi-directional modality fusion: gener-
ate forward and adjust backward the audio-visual features.

This observation motivates us to efficiently fuse audio and
visual features in a bi-directional way (cf. Fig. 2). On the
one hand, the audio and visual features are forward close to
the audio-visual features. On the other hand, the audio-visual
features are adjusted backward with the help of audio and vi-
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Fig. 3. Left: the architecture of BMFN. Audio-Visual Fusion Attention module produces the audio-visual features by fusing the
original audio features and visual features. Self-attention operations consisting of expansion self-attention (ESA) and normal
self-attention (NSA) are applied to the corresponding features. Then, forward and backward attention modules are utilized
to generate and adjust the audio-visual features. Forward-Backward Fusion modules (FBFM) can integrate features from two
directions. The final comprehensively fused features are the mean of results from FBFM. The predictions are obtained by event-
relevant results and event-category results as [10]. Right: the architecture of AVFA. Audio-visual features obtained by MFB
are enhanced in channel and spatial dimensions. � and ⊗ separately stand for the element-wise and matrix multiplications.

sual features to improve the feature representation capacity.
The information from all audio-visual fusion cells in these
two branches is comprehensively and effectively integrated
for final event localization. Our key contributions are as fol-
lows: i) we propose an audio-visual fusion attention (AVFA)
module to obtain high-level semantic audio-visual features;
ii) we propose a novel bi-directional modality fusion network
(BMFN) to generate and adjust audio-visual features; iii) our
extensive experimental results on the AVE dataset [3] illus-
trate the superiority of our BMFN.

2. PROPOSED METHOD

2.1. Problem Statement

Each segment of the videos from the AVE dataset [3] is rep-
resented as S = (vt, at)

T
t=1, where vt and at respectively

stand for the visual and audio features of the t-th segment.
The aim is to localize the segment-level event. The detailed
segment-level event label yt = {yct | yct ∈ {0, 1}, c =

1, ..., C,
∑C

c=1 y
c
t = 1} can be obtained in a fully-supervised

setting, where C is the total number of event categories plus
one background label. Otherwise, only the video-level label
is provided for training in the weakly-supervised setting.

2.2. Audio-Visual Bi-directional Fusion Network

The overall architecture of the BMFN is shown in Fig. 3(left).
The details of all the modules are described below, where σ,
δ, tanh, and SM respectively stand for the ReLU, sigmoid,
tanh, and softmax functions, � and ⊗ respectively denote the
element-wise and matrix multiplications, and GVP denotes
the global average pooling in the spatial dimension.
Feature Extraction: According to previous works [3, 10, 4,
11], we apply the VGG-19 model [12] (pre-trained on Im-
ageNet [13]) to extract the visual features vt ∈ Rdv×(HW )

(whereH andW are the height and width of feature maps, re-
spectively). In addition, we utilize VGGish [14] (pre-trained
on AudioSet [15]) to extract the audio features at ∈ Rda .
Visual Attention: To reduce the spatial dimension and en-
hance the representation capability of visual features el-
egantly, the visual features are enhanced by successively
applying the channel attention MCt ∈ Rdv×1 and spatial at-
tentionMSt ∈ R1×(HW ). The entire computation process of
the enhanced visual features vEt ∈ Rdv is written as:

MCt = δ(W2σ(W1(GVP(Φc
vvt)))), v

C
t =MCt � vt,

MSt = SM
(
tanh

(
W3v

C
t

))
, vEt = vCt ⊗

(
MSt

)T
,

(1)

where Φc
v ∈ Rdv×dv is a fully-connected layer with ReLU

activation, W1 ∈ Rd×dv , W2 ∈ Rdv×d and W3 ∈ R1×dv

are three linear transformations with d = 256.
Fusion Feature Attention: As shown in Fig. 3(right), we
design an AVFA block to initially fuse the audio and visual
features and extract high-level semantic features by applying
the multi-modal factorized bilinear (MFB) method [16] and
the spatial and channel attention mechanisms. av1

t , av2
t ∈

Rdv×(HW ) are separately achieved by applying the MFB
method on V1 = ΦV1

vst , A1 = ΦA1
at and V2 = ΦV2

vst ,
A2 = ΦA2

at in each spatial location s ∈ [1, ...,HW ], where
ΦV1 ,ΦV2 ∈ Rdm×dv and ΦA1 ,ΦA2 ∈ Rdm×da are rise-
dimension transformations with dm = 2560. av1

t can be
computed as follows:

˜av1
t = D(SP(V1 �A1, p)),

ˆav1
t = sign( ˜av1

t )

√∣∣∣ ˜av1
t

∣∣∣, av1
t = ˆav1

t/
∥∥∥ ˆav1

t

∥∥∥ , (2)

where SP(f, p) represents the sum pooling operation with la-
tent parameter p = 5, and D(·) is a dropout layer. The power
andL2 normalizations are applied to stabilize the model train-
ing. The channel-attentive weight WCt and spatial attentive



weight WSt are formulated from Wt (Wt = σ(W4(av1
t ))),

which are then applied to the features av2
t yielding final at-

tentive fusion features avt ∈ Rdv . The details are as follows:

WCt = δ(W5(GVP(Wt))), avCt =WCt � av2
t ,

WSt = SM (tanh (W6 (Wt))) , avt = avCt ⊗
(
WSt

)T
,

(3)

where W4 ∈ Rd×dv , W5 ∈ Rdv×d, and W6 ∈ R1×d are
three linear transformations with d = 256.
Self-Attention: To explore the temporal relationship for each
modality, we separately feed the vEt , at, avt into self-attention
blocks obtaining self-attentive features vselft , aselft , avself

t ∈
Rd. A self-attention block is composed of an expansion self-
attention (ESA) and a normal self-attention (NSA). ESA is an
encoder of transformer embedded with linear expansion and
linear reduction according to [17]. The details are as follows,
where BN and LN respectively refer to the batch and layer
normalizations and FFN is the feed forward network [7]:

Q̂ = QWQ̂, K̂ = KWK̂ , V̂ = VWV̂ ,

Att = SM

(
Q̂K̂T

√
d

)
, A = FFN(LN(B + Q̂)),

Âtt = BN(W8(δ(BN(W7Att)))), B = (Âtt + Att)V̂ ,

EncoderESA(K,Q, V ) = LN(A+B),

(4)

whereQ,K, V ∈ RT×d are input reshaped features with d =
256; WQ̂,WK̂ ,WV̂ ∈ Rd×d are projection matrices; Att
and Âtt are attention maps with the dimension of nh × T × T
(the head nh equals to 4 and the temporal dimension T equals
to 10); W7 ∈ R(nh∗r)×nh (the expansion ratio r is 2) is the
linear attention expansion matrix; and W8 ∈ Rnh×(nh∗r) is
the linear reduction matrix. NSA is an encoder of transformer
block [7]. The calculation is as follows:

Q̃ = QWQ̃, K̃ = KWK̃ , Ṽ = VWṼ ,

X = MHA(Q̃, K̃, Ṽ ), Y = FFN(LN(X + Q̃)),

Encoder(K,Q, V ) = LN(X + Y ),

(5)

where Q, K, V ∈ RT×d are output features from ESA;
WQ̃,WK̃ ,WṼ ∈ Rd×d are projection matrices; and MHA
is the multi-head attention [7] with 4 heads.
Bi-directional Modality Fusion: Inspired by the enhance-
ment and adjustment mechanisms in the audio-visual cells [9],
we propose a bi-directional modality fusion module for ob-
taining more graceful fusion features. The module consists
of the forward and backward attention blocks, where the
forward attention module enables the unimodal features to
step close to the fusion features, and the backward attention
module adjusts the fusion features with the help of unimodal
features for more representative features. Two forward atten-
tion blocks (FA) exist, which are represented as FA1 and FA2,
whose queries are vEt and at, respectively, and keys (same as
values) separately are vEt and at concatenated with avself

t .
Two backward attention blocks (BA) exist in the network,
including BA1 and BA2, whose queries are attentive fusion

feature avt, and keys (same as values) separately are vselft

and aselft concatenated with avt. FA1, FA2, BA1, and BA2

follow the encoder architecture of transformer like Eqn.(5)
and output the audio-visual features fa1t , fa2t , ba1t , ba2t ∈ Rd,
respectively. The fusion process is written as:

ba1t = Encoder(avt, cat(avt, v
self
t ), cat(avt, v

self
t )),

fa1t = Encoder(vEt , cat(vEt , avself
t ), cat(vEt , avself

t )),

fa2t = Encoder(at, cat(at, avself
t ), cat(at, avself

t )),

ba2t = Encoder(avt, cat(avt, a
self
t ), cat(avt, a

self
t )).

(6)

Forward-Backward Fusion Module (FBFM): The FBFM
is also an encoder of transformer and designed for further in-
tegrating the two directional fusion features. For example,
fa1t and ba1t are fed into FBFM1 obtaining F1 ∈ Rd, where
the query is the element-wise multiplication of fa1t and ba1t ,
and key same as value is the temporal concatenation of fa1t
and ba1t . fa2t and ba2t are also processed in the same manner
via FBFM2 obtaining F2 ∈ Rd. The detailed formulation is
summarized below:

F1 = Encoder(fa1t � ba1t , cat(fa
1
t , ba

1
t ), cat(fa

1
t , ba

1
t )),

F2 = Encoder(fa2t �ba2t , cat(fa
2
t , ba

2
t ), cat(fa

2
t , ba

2
t )).

(7)

Fully-Supervised Event Localization: The mean of F1 and
F2 is formulated as the final fusion feature F , which is similar
to integrating information from all audio-visual cells. Eqn.(8)
shows that F is used to compute the event-relevant score s ∈
RT and event category score sc ∈ RC , where T and C are the
number of temporal dimension and foreground categories.

s = Sigmoid(FC(F )), sc = SM(FC(MP(F ))), (8)

where FC is the classifier and MP denotes the max-pooling
operation. For fully-supervised training, the segment-level
event label is available. The corresponding objective function
is the summation of the binary cross-entropy loss for s and the
cross-entropy loss for sc. In the inference stage, if st > 0.5,
the t-th segment is predicted as an event, and its category is
depended on sc, otherwise, it is predicted as background.
Weakly-Supervised Event Localization: Only video-level
labels can be used in this setting, and joint scores sf ∈ RT×C

are calculated by element-wise multiplying s copied C times
with sc duplicated T times. Video-level predictions can be
obtained by aggregating segment-level predictions sf into the
MIL pooling [18]. The inference method is the same as that
in the fully-supervised setting.

3. EXPERIMENTS

Dataset: The Audio-Visual Event dataset [3] is used to evalu-
ate our model, which is a subset of AudioSet [15]. The dataset
has 4,143 videos and 28 audio-visual event categories. Each
video is 10s, where the audio-visual event lasts from 2s to



Table 1. Comparisons of accuracy (%) on the AVE dataset for
the fully- and weakly-supervised settings. * and ** separately
mean that the results are reproduced by [6] and [11].

Methods Fully-super. Weakly-super.

AVEL(Only Video) [3] 55.3 52.9
AVEL(Only Audio) [3] 59.5 53.4

AVSDN* [4] 72.6 66.8
AVEL [3] 72.7 66.7

CMAN** [19] 73.3 70.4
DAM [10] 74.5 -
AVRB [20] 74.8 68.9
AVIN [5] 75.2 69.4
AVT [21] 76.8 70.2

CMRAN [6] 77.4 72.9
PSP [11] 77.8 73.5

Ours 78.7 74.0

10s. The video- and segment-level event labels are provided.
The used train/test split is same with all the existing methods.
Training Details: Our experiments are implemented using
PyTorch 1.2.1 on a TITAN RTX GPU of NVIDIA®. The
Adam optimizer with a mini-batch of 32 is used to train the
models. We set the initial learning rate to 5e-4, which we
divide by 2 every 10 epochs, and freeze after 30 epochs.
Comparison Results: Table 1 shows the performance com-
parisons between our method and state-of-the-art methods in
terms of both fully- and weakly-supervised AVE localization
tasks under the fair experimental setting. Our method follows
the bi-directional modality fusion and consistently achieves
the highest accuracies, i.e., 78.7% and 74.0%, outperform-
ing all other methods, which only adopt one direction. In
addition, Fig. 4 shows a comparison example with CMRAN
[6]. The audio signal from rat is weak, and the cover of the
hand in vision makes this example very challenging. The rich
high level semantic audio-visual features extracted from our
bi-directional method provide exact predictions.
Ablation Studies: Table 2 reports the ablation study on the
bi-directional modality fusion method. BMFN* is a variant
of BMFN, whose FBFM∗1 is used to process features fa1t

BG Rat Rat Rat Rat Rat

CMRAN

Ours

Rat BG BG BG BG BG

BG Rat Rat Rat Rat Rat

Prediction

Prediction

Ground-truth

Fig. 4. Qualitative comparisons with CMRAN [6]. Green and
red color separately refer to correct and incorrect results.

Table 2. Ablation study on the effect of bi-directional mech-
anism and FBFM module, measured by the accuracy (%).

Methods Fully-super. Weakly-super.

BMFN* w/o FBFM∗1 75.2 72.9
BMFN* w/o FBFM∗2 76.2 71.8
BMFN* 76.0 72.8
BMFN w/o FBFM1 77.7 73.0
BMFN w/o FBFM2 75.9 71.9
BMFN 78.7 74.0

Table 3. Ablation study on the final joint method, measured
by the accuracy (%). Concat operation is applied in the chan-
nel dimension.

Methods Fully-super. Weakly-super.

Add 78.6 71.9
Element-wise Multiply 76.6 70.5
Concat 76.5 72.0
Mean 78.7 74.0

and fa2t instead of ba1t , and FBFM∗2 fuses features ba2t and
ba1t rather than fa2t . In other words, FBFM∗1 only joins the
audio-visual features obtained through the forward direction,
and the audio-visual features from the backward direction
are only fed into FBFM∗2. The first and second rows in-
dicate that only one direction is adopted for localization.
The corresponding results show the limitation of obtaining
audio-visual features via one direction. The efficiency of
fusing forward and backward features via the FBFM module
can be seen by comparing BMFN* with BMFN. Further-
more, compared with the sixth row, the performance drop of
the fourth and fifth rows (separately removing FBFM1 and
FBFM2) demonstrates that richer and more comprehensive
audio-visual features are helpful in improving the localization
performance. Table 3 shows the ablation study of the final
joint method for all the audio-visual cells, indicating that a
simple average obtains the best performance.

4. CONCLUSION

In this paper, we propose a novel BMFN, which effectively
obtains audio-visual fusion features via two directions, in-
cluding “generate forward” and “adjust backward”, and then
these high-level joint features are summarized for final lo-
calization. Quantitative and qualitative comparisons in both
fully- and weakly-supervised settings with the current state-
of-the-art methods show the superiority of our method.
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