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Dense Modality Interaction Network for
Audio-Visual Event Localization

Shuo Liu, Weize Quan, Chaoqun Wang, Yuan Liu, Bin Liu, and Dong-Ming Yan

Abstract—Human perception systems can integrate audio and
visual information automatically to obtain a profound under-
standing of real-world events. Accordingly, fusing audio and
visual contents is important to solve the audio-visual event (AVE)
localization problem. Although most existing works have fused
audio and visual modalities to explore their relationship with
attention-based networks, we can delve into their relationship
more deeply to improve the fusion capability of the two modal-
ities. In this paper, we propose a dense modality interaction
network (DMIN) to elegantly leverage audio and visual informa-
tion by integrating two novel modules, namely, the audio-guided
triplet attention (AGTA) module and the dense inter-modality
attention (DIMA) module. The AGTA module enables audio
information to guide the network to pay more attention to event-
relevant visual regions. This guidance is conducted in the channel,
temporal, and spatial dimensions, which emphasize informative
features, temporal relationships and spatial regions, to boost the
capacity of representations. Furthermore, the DIMA module es-
tablishes the dense-relationship between audio and visual modal-
ities. Specifically, the DIMA module leverages the information of
all channel pairs of audio and visual features to formulate the
cross-modality attention weight, which is superior to the multi-
head attention module that uses limited information. Moreover, a
novel unimodal discrimination loss (UDL) is introduced to exploit
the unimodal and fused features together for more exact AVE
localization. The experimental results show that our method is
remarkably superior to the state-of-the-art methods in fully- and
weakly-supervised AVE settings. To further evaluate the model’s
ability to build audio-visual connections, we design a dense cross
modality relation network (DCMR) to solve the cross-modality
localization task. DCMR is a simple deformation of a DMIN,
and the experimental results further illustrate that DIMA can
explore denser relationships between the two modalities. Code is
available at https://github.com/weizequan/DMIN.git.

Index Terms—Multi-modality; Audio-visual event localization;
Dense modality interaction; Attention

I. INTRODUCTION

INSPIRED by the multi-modality perception property of
human beings [1], [2], machine perception is remarkably

improved by transferring from single-modality learning to
multi-modality learning, with the significant advances in vi-
sion, speech, and language processing [3], [4]. The fusion of
the two most important and prevalent modalities, namely, the
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Fig. 1. An example of the audio-visual event localization. The goal of AVE
localization is to predict the event label for each segment of a given video
sequence. An event that is both audible and visible is regarded as an audio-
visual event (“Fixed-wing aircraft” in the third and fourth segments). On
the contrary, a segment is not both audible and visible, which is predicted
as background. In addition, the asynchronous situation makes the AVE
localization more challenging, for example, the sound of the fixed-wing
aircraft is heard in the second segment, while the appearance of fixed-wing
aircraft is seen in the third and fourth segments.

Visual segment :V Audio segment :AVideo Sequence

A2V: find synchronized visual segment V with audio content A

V2A: find synchronized audio segment A with visual content V

Fig. 2. Illustration of cross-modality localization. For A2V, we want to find its
synchronized  -second visual segment by giving a  -second audio segment.
For V2A, we want to find its synchronized  -second audio segment by giving
a  -second visual segment.

audio and visual modalities, has attracted extensive attention
from many communities. Audio-visual learning has various
applications, such as audio-visual separation [5], [6], [7],
audio-visual matching [8], [9], [10], speech recognition [11],
[12], [13], [14], [15], [16], audio-visual generation [17], [18],
[19], [20], and audio-visual event (AVE) localization [21],
[22], [23], [24], [25].

AVE localization means localizing the events temporally
while identifying the corresponding category, which can facil-
itate video understanding. An AVE is defined as the audible
and visible event in a video segment [21] (see Fig. 1).
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Several difficulties and challenges are experienced in the AVE
localization problem. First, noise sound, such as ambient sound
and target event sound, exists in video. Second, sound sources
are out-of-screen (i.e., asynchrony), thereby causing difficulty
in establishing the exact connections between objects and
sounds. Third, learned features among similar categories, e.g.,
guitars, ukuleles, and mandolins, tend to be very close in the
feature space, thereby causing difficulty in distinguishing the
corresponding event objects. The core of solving these issues is
to address how to fuse audio and visual information effectively
to obtain the correlation of the two modalities. The correlation
of two modalities is more elegant, the higher localization
performance will be obtained.

Most existing methods use deep-learning-based models with
various attention schemes [21], [26], [27], [22], [23], [24],
[25]. These methods often contain some or all of the fol-
lowing components: audio-guided visual attention (AGVA),
intra-modality attention, cross-modality attention, and audio-
visual feature fusion. However, several limitations affect their
localization accuracy. First, although many works have applied
audio-guided attention to obtain better visual features, their
fusion computation is usually coarse-grained. That is, they
only consider spatial attention [21], [27] or spatial-channel
attention [28]. The representation capability of visual features
could be enhanced by conducting fine-grained attention in
the channel, temporal, and spatial dimensions appropriately.
Second, intra- and inter-modality relationships are modeled
with the multi-head attention module [29]. Unfortunately,
the computation of the correlation weight mainly follows
the traditional sparse dot-product operation, which cannot
fully exploit the dense relationships between audio and visual
representations. Third, for network training, previous methods
overemphasize the fused features of audio and visual modal-
ities (only adding loss functions in the final classifiers), but
ignore the classification capability of the unimodal features.
Intuitively, one modality feature may have larger differences
when another modality feature is very similar to the close
categories.

To enhance the accuracy of AVE localization, in this paper,
we propose a dense modality interaction network (DMIN)
to elegantly integrate audio features with visual features by
introducing two novel modules, namely, the audio-guided
triplet attention (AGTA) module and the dense inter-modality
attention (DIMA) module. When the audio features are related
to visual features, with the exact guidance of audio signals, the
AGTA module aims to improve the representation capability
of visual features by highlighting event-relevant visual regions
while reducing the interference from background regions or
irrelevant objects. When the audio features are not perfectly
in sync with the visual features, the final audio-guided at-
tention can avoid the event-relevant visual regions and focus
on event-irrelevant regions. Specifically, the guidance of the
AGTA module is applied in the channel, temporal, and spatial
dimensions.

Cross-modality relation attention (CMRA) [28] uses the
multi-head attention module, whose query originated from
one modality while the key and value originated by tem-
porally concatenating two modalities. The motivation is to

exploit the cross-modality relations, while not neglecting the
intra-modality relation information. However, the two parts
of the key use the same classical sparse correlation weight
computation. As a result, the query prefers to leverage the
information of their own modality, thereby hindering the
fusion of two modalities. To solve this problem, we propose
a DIMA module to model the correlation between audio and
visual representations in a dense modality interaction manner.
A novel dense attention block with a full channel pair product
replaces the multi-head attention to obtain the dense inter-
modality correlation weight. This block formulates all channel
pairs of audio and visual features to explore more fine-grained
attention computation. Intuitively, all channel pairs of audio
and visual features can provide information that is richer than
the limited channel pairs, which will be more helpful for
exploring inter-modality relationships.

Audio-visual fused features may destroy some originally
useful information in unimodal features. Several existing
works have followed similar ideas that add constraints to the
middle-level features. Hou et al. [30] propose an audio-visual
deep CNN with a multi-task learning framework to enhance
the speech. During training, the auxiliary visual information
at the output layer serves as part of the constraints. Li et
al. [31] design a two-stream network with additional emotion
constraints on video and audio branches for cross-modal music
retrieval. Vielzeuf et al. [32] and Fayek et al. [33] add loss
functions to unimodal and multimodal predictions and then
propose specific strategies for combining multiple predictions
to obtain the final prediction. However, this is nontrivial as
stated in [34]. Based on the above insights, we propose a
unimodal discrimination loss (UDL) to emphasize the local-
ization capability of unimodal features without introducing
additional tasks or designing a complex combination strategy
for multiple predictions. Specifically, we simply add a category
classification loss in the middle-level visual features before
the cross-modality fusion, and this loss is combined with the
common event localization losses to train the model in an end-
to-end manner.

To further validate the superiority of DIMA at explor-
ing the cross-modality correlation, we design a dense cross
modality relation network (DCMR) to solve the cross-modality
localization (CML) task. As shown in Fig. 2, CML aims
to search for the synchronized segment of one modality by
giving the segment of the other modality, in other words,
to build the bridge from one modality (audio/visual features)
to the other modality (visual/audio features). Different from
the AVE localization task, no semantic (or event category)
label is provided in CML. Tian et al. [21] design an audio-
visual distance learning network based on the two modality
features, and Wu et al. [27] apply a global representation of
one modality to check every segment of the other modality
for localization. However, these two methods do not exploit
the dense inter-modality relationships and thus have limited
cross-modality localization performance.

The main contributions of our work are summarized as
follows:
• We develop an audio-guided triplet attention module to

enhance the representation capability of visual features
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with fine-grained audio guidance in the channel, temporal,
and spatial dimensions.

• We propose a dense inter-modality attention module to
elegantly fuse the audio and visual modalities via a dense
fusion attention block with a full channel pair product.

• We introduce a unimodal discrimination loss to empha-
size the ability of unimodal features. This loss is com-
bined with the common event localization losses to allow
the network to simultaneously explore the localization
capabilities of integrated features and unimodal features.

• We devise a dense modality interaction network for AVE
localization that combines the three aforementioned mod-
ules. The experimental results on the publicly available
AVE dataset show that our method achieves state-of-the-
art performance in fully- and weakly-supervised settings.

• We design a dense cross modality relation network for
the cross-modality localization task. DCMR is a simple
deformation of a DMIN. In DCMR, the AGTA module
and the audio-visual fusion module are removed from the
DMIN, and a cross-matching mechanism is introduced.
Our network achieves superior performance.

II. RELATED WORK

A. Attention Mechanisms

An attention mechanism imitates the human perception
system to capture long-range dependencies automatically and
highlight the critical part of input signals selectively. Hu et
al. [35] propose a channel-wise attention mechanism that
considers the global information of each channel to select the
meaningful feature maps and suppress the others. The mech-
anism is intended to model the inter-dependencies between
the channels of its spatial features. Woo et al. [36] further
combine channel-wise and spatial attention and verify that the
use of both is superior to only utilizing channel-wise attention.
Chen et al. [37] introduce a convolutional neural network that
embeds spatial and channel-wise attentions for image caption-
ing. Vaswani et al. [29] present a self-attention mechanism to
acquire the global dependencies between the input and the out-
put, which greatly improves machine translation performance.
Devlin et al. [38] extend the self-attention mechanism for
pre-training word embedding and achieve good performance.
Wang et al. [39] utilize a self-attention mechanism in the
vision domain to attempt to capture the pixel-level long-range
dependencies in spatial and time dimensions via a non-local
(NL) operation. Although previous works have paid attention
to capturing long-range dependencies in channel, temporal,
and spatial dimensions, there is no module simultaneously
combining attention in all these dimensions. Consequently, we
propose an AGTA module that conducts attention operations
in channel, temporal, and spatial dimensions. Moreover, the
encoder of the transformer architecture is applied to explore
the intra-modality relationship in our work.

B. Audio-Visual Event Localization

The goal of AVE localization is to localize a visible and
audible event and identify its category in unconstrained videos.

Tian et al. [21] first propose an audio-guided visual atten-
tion mechanism (AGVA) in the spatial dimension to guide
a network for visual modeling. Subsequently, they fuse the
temporally modeled audio and visual features via a dual multi-
modal residual network. Lin et al. [26] introduce a sequence-
to-sequence dual network that first extracts the local and global
features of videos and then feeds these features into a LSTM
(long short-term memory) to solve the event localization task.
Instead of fusing audio and visual representations at the local
segment level, Wu et al. [27] propose a dual attention matching
method to compute the relevance of events between the global
features of one modality and the local features of another
modality in a bi-directional manner. Ramaswamy [22] explores
the inter- and intra-modality interactions simultaneously via
an attention scheme and then concatenates these features for
event localization. To improve the discrimination capacity
of fused features, Ramaswamy [40] combines LSTM-based
fusion and the multi-modal factorized bilinear (MFB) pooling
method [41]. Xuan et al. [23] propose a three-stage attention-
based framework that includes spatial, sequential, and cross-
modality attention modules. Lin et al. [24] develop an audio-
visual transformer and instance-level cross-modality attention
to localize audio-visual event. Zhou et al. [25] propose a
positive sample propagation (PSP) module to fuse cross-
modality by emphasizing highly similar audio and visual fea-
tures while filtering out irrelevant features. Different from pre-
vious methods [21], [27] that conducted audio-guided visual
attention in the spatial dimension, Xu et al. [28] apply attention
computations in the channel and spatial dimensions. They
also introduced a relation-aware module to build connections
between audio and visual modalities by exploiting both intra-
and inter-modality information jointly.

Previous works have proposed some audio-guided visual
attention mechanisms to capture sound sources in visual
regions for better performance. However, these audio-guided
visual attention modules are subject to limited dimensions.
Instead, our proposed audio-guided triplet attention (AGTA)
is processed in channel, temporal, and spatial dimensions
with MFB-based fusion attention for fine-grained enhanced
visual features guided by audio features. In addition, exist-
ing works have utilized collaborative attention, LSTM-based
attention, and the encoder of a transformer to explore the inter-
modality relationships for more representative fusion features.
Unfortunately, these methods are somewhat coarse-grained by
simply and directly using the features of the two modalities.
Therefore, we design a dense inter-modality attention (DIMA)
based on dense fusion attention (DFA) to fuse audio and
visual features delicately for better localization performance.
Moreover, previous works ignore maintaining the localization
ability of unimodal features. However, our proposed unimodal
discrimination loss can further enhance the localization capa-
bility of network.

C. Cross-Channel Correlations

In this work, we propose dense fusion attention based on a
full channel pair product to model dense inter-modality rela-
tionships. In the following, we review several existing works
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that focus on the cross-channel correlations and highlight the
differences with our method.

Yue et al. [42] extend the NL operation [39] to compute the
correlations between any two positions across the channels that
yield the generalized non-local (GNL) operation. In particular,
they collapse the elements in all channels, spatial and temporal
positions in one dimension and then use a general kernel
function to formulate a pairwise weight matrix. Essentially,
they update the feature with each element as the key, which
may introduce potential confusion, whereas our DIMA keeps
the original feature architecture with the feature vector as
the key. Kuo et al. [43] propose a fully generalized non-
local (FGNL) operation to solve the singer identification
task. Specifically, they propose the FGNL operation extended
among all of the elements across channels and layers to
obtain richer features. Concatenating the feature matrices from
different layers and subsequently rolling the matrices along
the channel axis with the classical attention computation
yields concatenated features. Moreover, a modified squeeze-
and-excitation scheme is utilized to highlight the correlated
feature channels. However, the processing of full channel
dense correlations is apparently different: FGNL divides these
correlations into multiple groups, and each group is indepen-
dently processed to update the features many times, whereas
our DFA sums up these correlations with different weights
and then updates the features at once, which is simpler and
more effective. In addition, the post-processing operation for
restoring the original channel dimensions may cause confusion
in FGNL. However, DIMA does not have a similar operation to
keep the original feature architecture and enhance the semantic
representation. Hsienh et al. [44] propose a so-called co-
attention mechanism, where the query and key are essentially
different compared with traditional self-attention. In addition,
this co-attention is realized via a non-local operation. That is,
the classical dot product is used to compute the correlation,
which is obviously different from our DFA based on the full
channel pair product.

D. Cross-Modality Localization
The aim of the cross-modality localization task is to evaluate

a model’s capability of utilizing the audio-visual relationship.
The task aims to find the synchronized segment of one
modality from the other modality. Tian et al. [21] propose
the AVLN method, which measures the correlation of the
extracted features from two modalities based on the simple
Euclidean distance. The DAM [27] utilizes the global features
by watching a long event sequence and then checks each
segment of the other modality to predict the event relevance.
The AVLN method is relatively simple to explore the cross-
modality relationship. The DAM method temporally averages
the query features that result in a confused global feature,
and the cross-check mechanism is also somewhat coarse-
grained. Therefore, we propose a dense cross modality relation
(DCMR) network to elegantly explore the denser cross modal-
ity information by using a DIMA module. Furthermore, we
average the features in the channel dimension instead of the
temporal dimension, which is then used in a more fine-grained
cross-check mechanism.

E. Multimodal Fusion Method

Three types of methods, namely, simple operation-based,
attention-based, and bilinear pooling-based methods, are used
to fuse multimodal representations.

Simple operation-based methods usually fuse multi-modal
features via simple operations, such as addition, weighted
sums [45], element-wise multiplication or concatenation [46],
[47], [48], [32], [49]. An obvious advantage of these methods
is that only a few or no parameters are often needed to conduct
learning. These methods have been widely used in previous
works on AVE localization.

Attention-based methods mainly update a feature via the
weighted sum of a set of features with scalar weights, which
are computed by modeling a certain correlation between
two features. A classical self-attention-based method, i.e., the
transformer, is proposed by Vaswani et al. [29] to model
the long-distance dependencies among words. Based on the
transformer, Devlin et al. [38] introduce the well-known BERT
(bidirectional encoder representations from transformers) for
pre-training language representations. LXMERT [50] learn the
intra-modality features for each modality by using indepen-
dent encoders and learn the inter-modality features by using
additional cross-attention encoder. OmniNet [51] fuse current
modality features with those of other modalities by exploiting
a gated multi-head attention model embedded in each decoder
block. Recently, Xu et al. [28] combine self-attention and
cross-attention into a multi-head attention module [29] to
simultaneously model intra- and inter-modality relationships.
However, the same correlation weight computation in this
module causes the query modality to opt for the information
of their own modality, which hampers the fusion of the two
modalities. We introduce a dense fusion attention to enhance
the audio-visual features and align the two modalities for better
performance.

Bilinear pooling-based methods learn the joint representa-
tion space of two-modality feature vectors. Considering the
high number of parameters in the project matrix of bilinear
pooling, some approximation methods seeking to obtain com-
pact bilinear representations have been proposed. The multi-
modal compact bilinear (MCB) pooling method combines the
two-modality vectors by projecting them to higher dimensional
space randomly and then convolving them using element-wise
multiplication in the fast Fourier transform space [52]. To
reduce the memory requirement of the MCB pooling method,
Kim et al. [53] propose a low-rank bilinear pooling (MLB)
method. The MLB method first uses linear mapping to project
the two modality features into the same low-dimensional space
and then applies element-wise multiplication and nonlinear
activation to obtain fused features. Subsequently, Yu et al. [41]
propose the MFB pooling method, which extends the MLB
method with an expansion-and-squeeze operation. In this
work, we utilize MFB in our AGTA module to model the
fine-grained relationship between audio and visual features.
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Fig. 3. The architecture of our proposed dense modality interaction network. The pre-extracted audio and visual features are given to the network. A novel
audio-guided triplet attention is applied to enhance the visual features via the fine-grained attention conducted in the channel, temporal, and spatial dimensions.
An intra-modality attention module is then used to exploit the intra-modality relationship. Afterwards, a dense inter-modality attention module is designed
to elegantly explore the inter-modality relationship with a dense correlation weight computation. An audio-visual fusion module is finally adopted to learn
the joint representation for the AVE localization. Meanwhile, we introduce a unimodal discrimination loss to enhance the classification capability of visual
modality. In the inference stage, we use the event-relevant label and event category label from the two-modality fused features as the final prediction.

III. PROBLEM FORMULATION

A. Notations

A video sequence with ) non-overlapping segments is
represented as - = (+C , �C ))C=1, where each segment lasts
one second; and +C and �C represent the visual and audio
components of the C-th segment, respectively.

B. Audio-Visual Event Localization

The audio-visual event localization task aims to identify
whether a video segment contains an audio-visual event and
the category of the event. An audible and visible event is
an audio-visual event; otherwise, the event is defined as
background.

In a fully-supervised setting, for each segment -C , we can
access the detailed segment-level event label HC = {H2C | H2C ∈
{0, 1}, 2 = 1, ..., �,

∑�
2=1 H

2
C = 1}, where � is the total number

of event categories plus one background label.
In a weakly-supervised setting, only the video-level label is

provided for training, although we still intend to predict the
segment-level labels in the testing stage. Specifically, a video-
level label represents what event category is contained in the
video.

C. Cross-Modality Localization

The goal of the cross-modality localization task is to predict
the position of the synchronized content in one modality
(visual/audio) with a segment of the other modality (au-
dio/visual) [21]. The core of this task is to exploit the audio-
visual correlations in the temporal dimension. Dense cross-
modality relation information can be utilized to boost the
performance.

For visual localization from audio (A2V), we use a  -
second ( < )) audio segment �̃ from {(�C )})C=1 to localize
its synchronized  -second visual segment within {(+C )})C=1.

Similarly, for audio localization from a visual segment (V2A),
we use a  -second ( < )) visual segment +̃ from {(+C )})C=1
to find its synchronized  -second audio segment within
{(�C )})C=1. In this task, only event-relevant labels without event
categories are provided.

IV. AUDIO-VISUAL EVENT LOCALIZATION

The network architecture of our method is shown in Fig. 3.
Given a video sequence, VGG-19 [54] pre-trained on Ima-
geNet [55] is used to extract the visual features from the
video input, and VGGish [56] pre-trained on AudioSet [57]
is utilized to abstract the audio features from the log mel-
spectrogram of the audio input. This feature extraction process
is also the same as that of the state-of-the-art methods [21],
[27], [28]. To improve the representation capability of the
visual features, we propose a novel AGTA module, which
takes the visual features as input and outputs their enhanced
version with fine-grained guidance from the audio features.
Then, symmetric intra-modality and dense inter-modality at-
tention blocks are applied. Specifically, the audio features and
enhanced visual features are respectively fed into two self-
attention modules to model the intra-modality relationship.
Next, the self-attentive audio features and enhanced visual
features conduct the inter-modality fusion with our proposed
dense inter-modality attention module. The DIMA module
implements dense fusion attention by using the full chan-
nel pair product to delve into the relationship of the two
modalities more deeply. In addition, the self-attentive visual
features and the audio features perform the above process
similarly. Finally, an audio-visual fusion module is utilized
to fuse the cross-attentive visual and audio features to achieve
joint representation. Similar to [27], the localization task is
decoupled as two sub-tasks, namely, event relevance prediction
and event category prediction, which are accomplished with
the two multi-layer perceptions. Furthermore, a unimodal
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Fig. 4. Overview of our proposed AGTA module, which conducts the audio
guidance with the attention in the channel, temporal, and spatial dimensions.
� stands for the element-wise multiplication, ⊕ means the element-wise
addition, and ⊗ means the matrix multiplication.

discrimination loss is added to the self-attentive visual features
to further enhance the discrimination capability of the visual
modality. In the following sections, we describe the details of
all the modules.

A. Audio-Guided Triplet Attention

Considering that the audio-visual event is audible and
visible, we first enhance the importance of event-relevant
visible objects and localize the sound sources in the visual
representation with the guidance of audio signals. Previous
works have proposed several AGVA modules [21], [40], [28] to
guide visual signals with audio signals. Unfortunately, in these
modules, audio features only participate in visual attention in
limited dimensions, where AGVA [40] focuses on the spatial
dimension and AGSVA [28] focuses on the spatial and channel
dimensions. We propose a novel AGVA module called Audio-
Guided Triplet Attention (AGTA) to exploit audio-guided
visual attention in channel, temporal, and spatial dimensions.
This module stresses informative features and every timely
spatial region feature to improve the localization accuracy.
We also introduce an attention module based on multi-modal
factorized bilinear pooling (MFB) [41] that is embedded in
every spatial region to emphasize the high-level semantic
multi-modal fusion information.

Fig. 4 shows the architecture of the ATGA module. This
module takes as the input the audio features 0C ∈ R30 and
visual features EC ∈ R3E×(�, ) (where � and , are the height
and width of the feature maps, respectively), and outputs
audio-enhanced visual features. In the following, we describe
the details of AGTA module.
Channel-wise Attention. We first regulate the visual features
with the channel-wise weights, which are computed by fusing
the audio and visual features. Channel-wise attention can
explicitly model the correlations among all of the elements
across the channels. The aim is to select the event-relevant
feature clues and suppress the others with the guidance of
audio signals, while building the potential interactions for fine-
grained audible events since the interactions usually corre-
spond to different channels of the features. We follow [28]

and implement channel-wise attention. First, the audio and
visual features are projected and aligned with two non-linear
transformations, and the channel-wise weights are obtained
through a squeeze-and-excitation block [35]. This process can
be formulated as:

MC
C = f(W2X(W1 (�+%(Φ200C � Φ2EEC )))), (1)

where Φ20 ∈ R3E×30 and Φ2E ∈ R3E×3E are fully-connected
layers with ReLU; � denotes the element-wise multiplica-
tion; �+% denotes the global average pooling in the spatial
dimension; W1 ∈ R3E×3 and W2 ∈ R3×3E are two linear
transformations with 3 = 256; X and f represent the ReLU
and sigmoid activations, respectively; and the channel-wise
attention map is denoted as MC

C ∈ R3E×1.
Then, the channel attentive visual features are obtained via:

ECC =MC
C � EC , (2)

where the element-wise multiplication � is conducted in the
channel dimension of EC .
MFB-based Attention. We first exploit the audio-visual
spatial correlation using the MFB method. MFB can build
compact correlations between audio and visual features, which
is better than simple element-wise addition and multiplication.
Therefore, we apply MFB to the visual features of each visual
region with audio features that model the fine-grained audio-
visual relationships in a spatial-wise manner. Specifically, we
project and align the audio features 0C and channel attentive
visual features ECC with the same dimension :3> using fully-
connected layers with ReLU. Then, the projected features
are fed into the MFB module to compute the correlation
instead of using simple element-wise multiplication. We use
the shared MFB block to proceed with the audio feature and
the visual feature in each spatial location. Essentially, the 3>-
dimensional correlation MS

0EBC
is obtained by 0CWEBC , where

W ∈ R30×3E×3> is a learnable tensor, and B ∈ [1, ..., �,]
is the spatial location index of visual feature EC . Due to the
large number of parameters in W, the MFB block utilizes the
factorization trick and achieves the following reformulation:

MS
0EBC

= � ((%(Φ) 0C � Ψ) EBC , :)), (3)

where Φ ∈ R30×(:3>) and Ψ ∈ R3E×(:3>) are two learnable
matrices factorized from W, � represents element-wise multi-
plication, (%( 5 , :) represents the sum pooling operation with
kernel size : and stride of : , and a dropout layer � (·) is used
to prevent potential over-fitting. In addition, power and !2
normalizations are also applied to stabilize the model training:

MS
0EBC
← sign(MS

0EBC
)
√���MS

0EBC

���,MS0EBC ←MS0EBC /MS0EBC  .
(4)

Temporal Attention. The aforementioned MFB-based atten-
tion primarily models the correlation between audio and visual
features in the spatial dimension. Hereafter, we also consider
temporal attention based on Bi-LSTM. Different from [40],
which simply feeds globally averaged visual features and
audio features into Bi-LSTM, we process every spatial lo-
cation B ∈ [1, ..., �,] in a dense manner. The motivation
behind spatial-wise temporal attention is to build the temporal
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Fig. 5. Illustration of the dense inter-modality attention module (DIMA). DIMA contains a dense fusion attention module (DFA) with full channel pair
product operation (FCPP) to compute the dense correlation for exploring inter-modality relationship. DIMA is also in multi-head setting, and the number
of head in this illustrated example is 2 (ℎ = 1, 2). The blue and gray colors separately denote two modality features. ⊕ means the concatenation along the
temporal dimension, ⊗ means the matrix multiplication, and ~ means the outer product.

dependencies of each spatial region among all the audio-visual
elements between temporal frames, and to highlight event-
relevant visual features without potential loss of information.
Specifically, we use the fully-connected layers with ReLU
to project the audio features 0C and channel attentive visual
features ECC into the same dimension 3> again. The formulation
for obtaining the projected audio features 0?C ∈ R3> and visual
features E?C ∈ R3>×�, is as follows:

0
?
C = Φ00C , E

?
C = ΦEE

C
C , (5)

where Φ0 ∈ R3>×30 and ΦE ∈ R3>×3E are lin-
ear operations with ReLU activation. Then, the spatial
visual feature E

?B
C and audio feature 0

?
C are reorga-

nized as
( [
E
?B
1 + 0

?

1 , 0
?

1
]
, ...,

[
E
?B
)
+ 0?

)
, 0
?

)

] )
. Then, the in-

put
[
E
?B
C + 0

?
C , 0

?
C

]
is forwarded through Bi-LSTM. The 3>-

dimensional correlation MT
0EBC

is calculated as:

MT
0EBC

= BiLSTM
( [
E
?B
C + 0

?
C , 0

?
C

] )
. (6)

Spatial Attention. Spatial attention can build the audio-
visual relationships among each spatial location, highlight the
semantic objects in the visual modality under the guidance of
audio signals, and finally obtain a compact and audio-related
high-dimensional visual representation. In the AGTA module,
temporal attention and MFB-based attention are conducted in
a spatial-wise manner for fine-grained audio-visual correlation
modeling, and then embedded in the spatial attention module
for re-organizing spatial visual and audio features, which
aims to build more fine-grained and temporally aligned audio-
visual features. Specifically, we compute the spatial attention
map (MSC ∈ R�, ) by combining MFB-based attention and
temporal attention. In this way, the bilinear model based fusion
and LSTM can promote each other, and their advantages can

be fully exploited in each spatial region from the spatial and
temporal dimensions. The detailed formulation is as follows:

MSC = Softmax
(
tanh

(
W3

(
MS0EC +M

T
0EC

)))
, (7)

where MS0EC and MT
0EC

are separately obtained by concate-
nating MS

0EBC
(Eqn.(4)) and MT

0EBC
(Eqn.(6)) in the spatial

dimension (B ∈ [1, ..., �,]), and W3 ∈ R1×3> is the linear
dimension reduction. Then, the channel attentive visual feature
ECC is further updated using the spatial attention map MSC :

ESC = sum(MSC � ECC ), (8)

where sum is conducted in the spatial dimension.
To this end, we obtain the audio-enhanced visual features by

making full use of the information from the channel, temporal,
and spatial dimensions.

B. Intra-Modality Attention Module

After the AGTA module, the visual features are enhanced
through audio-guided attention at the segment level. For visual
features E ∈ R) ×3E and audio features 0 ∈ R) ×30 , we use
the linear layers to project them into the same dimension
of ) × 3<, thereby yielding transformed visual and audio
features as )E and )0, respectively. Then, we forward the
transformed features into the intra-modality attention module
to learn which segments are more informative and to explore
the intra-modality information for each modality.

Technically, we adopt the encoder of the transformer to per-
form intra-modality attention, and we take the visual modality
as an example to present the details of the intra-modality
attention module. Specifically, we first project visual feature
)E ∈ R) ×3< into a query feature, key feature, and value
feature, denoted as & ∈ R) ×3< ,  ∈ R) ×3< , and + ∈ R) ×3< ,
respectively. Next, the intra-modality attention is calculated
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using the dot product operation in a multi-head setting. &ℎ ∈
R) ×3: ,  ℎ ∈ R) ×3: , and +ℎ ∈ R) ×3: respectively represent
heads of related features, and 3: represents the dimension of
each head. The formulation is written as:

& = )EW&,  = )EW , + = )EW+ ,

Eℎ = Softmax

(
&ℎ

(
 ℎ

))
√
3:

)
+ℎ ,

E20C = cat(E1, E2, ..., E=)W$,

(9)

where W& ∈ R3<×3< , W ∈ R3<×3< , W+ ∈ R3<×3< , and
W$ ∈ R3<×3< are the projection matrices; and we employ
= = 4 parallel attention heads. We utilize a residual connection
followed by layer normalization to reduce degeneration, and
a feed-forward layer is added to further fuse several parallel
pieces of information.

EA = !0H4A#>A< (E20C + )E ) ,
E 5 = X (EAW4)W5,

EB4; 5 = !0H4A#>A<
(
E 5 + EA

)
,

(10)

where W4 and W5 are learnable parameters and X represents
the ReLU activation function.

C. Dense Inter-Modality Attention Module

In [28], a cross-modality relation module is introduced to
explore the relationship between audio and visual features via
the decoder structure of the transformer. However, this module
hinders the fusion of the two modalities because their query
prefers to leverage the information of their own modality and
does not fully exploit the relation information between audio
and visual features. In this paper, we propose a novel dense
fusion attention (DFA) to extend the traditional dot-product
attention (DPA) [29] yielding a new dense inter-modality
attention module (DIMA).

As shown in Fig. 3, two DIMA modules separately take
(0, EB4; 5 ) and (E, 0B4; 5 ) as the input pairs. We simply use
(G, H), where G ∈ R) ×3< denotes one modality feature (e.g.,
visual modality), and H ∈ R) ×3< denotes the other modality
feature (e.g., audio modality), to denote the input pair of the
DIMA module. Feature G ∈ R) ×3< is projected into query
feature & ∈ R) ×3< . Then, we temporally concatenate G with
H ∈ R) ×3< to obtain a feature �G,H ∈ R2) ×3< , which is
transformed into key feature  G,H ∈ R2) ×3< and value feature
+G,H ∈ R2) ×3< . DIMA is performed in a multi-head setting.
The number of heads is denoted as =, and the dimension of
each head is represented as 3: . In the DIMA module, we split
the correlation of each head between &ℎ and  ℎG,H (N&ℎ , ℎG,H ∈
R) ×2) ) as N&ℎ , ℎG ∈ R

) ×) and N&ℎ , ℎH ∈ R
) ×) , as shown in

Fig. 5(a). The intra-modality correlation
(
N&ℎ , ℎG

)
is obtained

via classical matrix multiplication (the key point is the dot
product of two vectors), and the inter-modality correlation(
N&ℎ , ℎH

)
is achieved through our proposed DFA to model

the dense cross-modality correlation. The formula of DIMA
is as follows:

& = GW&,  G,H = �G,HW , +G,H = �G,HW+ ,

N&ℎ , ℎG =
&ℎ ( ℎG ))√

3:
,N&ℎ , ℎH =

���(&ℎ ,  ℎH )√
3:

,

Gℎ = Softmax
(
cat

(
N&ℎ , ℎG ,N&ℎ , ℎH

))
+ℎG,H ,

G20C = cat(G1, G2, ..., G=)W$,

(11)

where W& ∈ R3<×3< , W ∈ R3<×3< , W+ ∈ R3<×3< , and
W$ ∈ R3<×3< are the learnable parameters; and the number
of parallel attention heads is 4 (= = 4). Similar to Eqn.(10),
the same operations are conducted on G20C to obtain the final
cross-modality features (E2A>BB or 02A>BB).

As shown in Fig. 5(b), DFA calculates the correlation of two
modalities (N ) via a variant of matrix multiplication, where
N8, 9 is obtained by applying the full channel pair product
(FCPP) instead of the dot product for query feature &ℎ

8
and

key feature
(
 ℎH

)
9
. This process is formulated as:

N = ���

(
&ℎ ,  ℎH

)
,

N8, 9 = ��%%
(
&ℎ8 ,

(
 ℎH

)
9

)
.

(12)

As illustrated in Fig. 5(c), FCPP refers to the full channel pair
product of query and key features. It is calculated as:

��%%

(
&ℎ8 ,

(
 ℎH

)
9

)
= sum

((
&ℎ8 ~

(
 ℎH

)
9

)
�W

)
, (13)

where ~ is the outer product and W is the weight matrix.

We split the elements of the matrix
(
&ℎ
8
~

(
 ℎH

)
9

)
into two

groups: the diagonal elements (corresponding to the original
inner product), and the remaining elements. Accordingly, the
diagonal elements of W are U and the remaining elements of
W are (1 − U) 1

3:−1 , where 1
3:−1 is the normalization factor.

Intuitively, we assign equal weights, i.e., U = 0.5 in our
experiments, to these two groups.

D. Audio-Visual Fusion Module

To obtain a compact and joint representation from audio and
visual modalities for the event localization task, we follow [28]
and fuse audio and visual features using an audio-visual fusion
module. The query �0E is the correlation obtained by the
element-wise product. The key is the temporal concatena-
tion of 02A>BB and E2A>BB. Considering that the query and
key are high-level comprehensive representations of the two
modalities, we replace the DFA in DIMA with DPA. Layer
normalization and a residual connection are added to reduce
transmission loss. The final multi-modality representation �>
is obtained as follows:

�0E = 02A>BB � E2A>BB ,
$ = ��"� (�0E , cat (02A>BB , E2A>BB)) ,
�> = !0H4A#>A< (�0E +$) .

(14)
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E. Loss Functions

Previous methods mainly focus on the final two-modality
fused features with the event localization loss. Through various
attention modules, which are commonly used in existing meth-
ods, some useful discrimination information of the unimodal
features might be destroyed or ignored. In this work, we
introduce a unimodal discrimination loss (UDL), which adds
constraints on the middle-level visual features. Our UDL
can be used in fully- and weakly-supervised settings. In the
following, we describe the details of the loss functions.
Fully-Supervised Losses. For the fully-supervised setting, we
can access the segment-level labels. The training objective
for fully-supervised event localization consists of an event-
relevant loss on �> and event category losses on EB4; 5 and
�>. The event-relevant loss is defined as:

B = Sigmoid(�� (�>)),

L 54A> = −
1
#

#∑
8=1

)∑
C=1

BC8 log(BC8 ) + (1 − BC8 ) log(1 − BC8 ),
(15)

where # is the number of training samples, and �� is the
classifier.

In addition, the event category loss on EB4; 5 is formulated
as:

B̂ = Softmax(�� (MaxPooling(EB4; 5 ))),

L 542< = −
1
#

#∑
8=1

 ∑
:=1

1{H8 = :} log( B̂: ),
(16)

where  is the number of event categories, 1{·} is the indicator
function (1{)AD4} = 1 and 1{�0;B4} = 0). Similarly, L 542> is
obtained by replacing EB4; 5 with �> in Eqn.(16).

In summary, the objective for the fully-supervised setting
is:

L 5 B = L 54A> + _ · L 542< + (1 − _) · L 542>, (17)

where _ is a balancing factor.
Weakly-Supervised Losses. In a weakly-supervised setting,
we can leverage only video-level labels, and this is usually

modeled as a multiple instance learning (MIL) task [58]. In
this case, our training objective includes event category losses
on EB4; 5 and �>. To simultaneously obtain the event-relevant
and event category predictions in the inference stage (like in
the fully-supervised setting), we aggregate these two types
of predictions to achieve video-level prediction using MIL
pooling [59]. Then, the event category losses on EB4; 5 (LF42<)
and �> (LF42>) are separately calculated based on the multi-
label soft margin loss. To this end, the final objective is

LFB = _ · LF42< + (1 − _) · LF42> . (18)

V. CROSS-MODALITY LOCALIZATION

To evaluate the model’s capacity for exploring audio-visual
relationships, we propose a dense cross modality relation net-
work (DCMR), which is a deformation of our dense modality
interaction network, to solve the cross-modality localization
(CML) task. CML aims to find the position of synchronized
event-relevant content between two modalities. The architec-
ture of DCMR is shown in Fig. 6.

In the training stage, event-relevant labels are provided. The
audio feature 0C ∈ R30 and visual feature EC ∈ R3E are fed
into the intra-modality attention module to obtain the self-
attentive features 0B4; 5 and EB4; 5 . Then, the most important
module DIMA uses one modality feature as the query to
jointly explore the intra- and inter- modality relationship
generating 02A>BB and E2A>BB. These two features are utilized to
further perform cross matching. Taking V2A as an example
(see Fig. 6), we first average E2A>BB in channel dimension:
E<40= = "40= (E2A>BB), where Mean is the channel-wise
average pooling operation. Furthermore, the query feature
E@D4A H is obtained from E<40= by removing the background
segments according to the event-relevant labels. Then, we
conduct the cross-matching operation by multiplying the audio
feature with the query visual feature in a sliding window
manner, which can shorten the distance of matched segments
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while lengthening the distance of mismatched segments. This
process is computed as:

50E = E@D4A H � 02A>BB
:=1,...,K

, (19)

where K is the number of  -second segments in 02A>BB. Given
that only an event-relevant label is provided for the cross-
modality localization task, DCMR is trained with the event-
relevant loss, as shown in Eqn.(15).

In the inference stage, we examine the final prediction
scores of the )-length candidate segments, and output the  -
length segment with the maximum contiguous sum as the final
localization prediction.

VI. EXPERIMENTS

In this section, we first describe the dataset and implemen-
tation details. Then, we compare our method with the most
advanced methods on the AVE dataset. Ablation studies are
conducted to validate and analyze our method.

A. Dataset

Following previous works [26], [27], [23], [28], [25], we
use the AVE dataset [21] to evaluate our method. The AVE
dataset is a subset of AudioSet [57]. The AVE dataset contains
4,143 videos, each of which has a duration of 10 seconds. Each
video contains one event category and is temporally labeled
with AVE boundaries. The number of event categories in the
AVE dataset is 28, including dog barking, acoustic guitar,
female speech, and so on. The audio-visual event in each video
lasts from 2 seconds to 10 seconds. We adopt the original
splitting [21] where the ratio of training/validation/testing
samples is 8:1:1. To evaluate the cross-modality localization
task, only short-event videos, where the duration of the event
is strictly between 2 seconds and 9 seconds, are sampled.

B. Implementation Details

Feature Extraction. Following the common setting, for the
visual features used in the audio-visual event localization task,
we apply VGG-19 network [54] pre-trained on ImageNet [55]
to extract pool5 feature maps from 16 sampled RGB frames
within each one-second video segment and then use global

average pooling on the 16 frames to obtain a 512×7×7 visual
feature. For the cross-modality localization task, global aver-
age pooling is also used in the spatial dimension to generate a
512-D visual feature vector. In addition, we extract the audio
features via the VGGish [56] pre-trained on AudioSet [57].
Each one-second audio segment is first transformed into log-
mel spectrograms and then a 128−� feature vector is extracted
in both tasks.
Training Details. Our experiments are implemented with Py-
Torch 1.2.1. The GPU is a NVIDIA TITAN RTX. Adam [60]
optimizer is used to train our models. We set the batch size
as 32. The base learning rate is initialized to 0.0005, divided
by 2 every 10 epochs and fixed after 30 epochs.
Evaluation Metric. In the audio-visual event localization task,
our network predicts the event label for each one-second video
segment. For a C-th segment, if the event-relevant score BC >
0.5, the event label is assigned according to the event category
score B̂, otherwise, this segment is predicted as background.
For fully- and weakly-supervised event localization, we follow
previous works [21], [26], [27], [23], [28], [25], which apply
the overall classification accuracy as the evaluation metric. The
cross-modality task has two parts, namely, audio localization
from visual content (V2A) and visual localization from audio
content (A2V). Following previous works [21], [27], we eval-
uate the performance by calculating the proportion of correct
matches in all testing samples, where a correct matching is
when the predicted audio/visual segment is exactly matched
with the other modality as the ground truth.

C. Comparisons with State-of-the-art Methods

1) Audio-Visual Event Localization: In this section, we
compare our proposed dense modality interaction network
with several of the most advanced methods quantitatively and
qualitatively.
Quantitative Evaluation. We compare our method with state-
of-the-art methods under fully- and weakly-supervised set-
tings. For fair comparisons, we use the same settings as those
in previous methods. The results are reported in Table I. For
fully-supervised AVE localization, our method achieves the
highest accuracy of 79.6%, which surpasses the second best
method PSP [25] by 1.8%. For the weakly-supervised setting,
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TABLE I
COMPARISONS OF ACCURACY (%) ON THE AVE DATASET FOR THE FULLY-

AND WEAKLY-SUPERVISED SETTINGS. * AND ** MEAN THAT THE
RESULTS ARE REPRODUCED BY [28] AND [25], RESPECTIVELY.

Methods Fully-supervised Weakly-supervised

AVEL (Only Video) [21] 55.3 52.9
AVEL (Only Audio) [21] 59.5 53.4

AVSDN* [26] 72.6 66.8
AVEL [21] 72.7 66.7

CMAN** [23] 73.3 70.4
DAM [27] 74.5 -
AVRB [40] 74.8 68.9
AVIN [22] 75.2 69.4
AVT [24] 76.8 70.2

CMRAN [28] 77.4 72.9
PSP [25] 77.8 73.5

Ours 79.6 74.3

our method still obtains the best performance of 74.3%, which
is higher than that of PSP [25] by 0.8%. These two results
indicate the superiority of our proposed method for the AVE
localization task.
Qualitative Evaluation. Fig. 7 shows two examples of audio-
visual event localization. Red refers to the wrong results, and
the other colors mean that the classification is correct. As
shown in the AGTA attention weight map (i.e.,MSC in Eqn.(7))
in each segment (the last row), when the segments contain
an audio-visual event, such as the last six segments in the
first example, the attention can focus on the sounding objects.
When the segment does not contain an audio-visual event,
such as the first three segments in the first example, where
the flute source is not visible, the attention map of AGTA is
smaller than those of the other methods, which means that
the correlation between the two modalities is smaller, which
is helpful for background inference. For the BG segments in
the second example, the two other methods somehow focus
on the noisy visual regions, thereby resulting in the incorrect
prediction of a train horn (CMRAN) or truck (AVEL). In
contrast, AGTA can pay attention to the unrelated background
region, which is helpful for prediction. For the seventh and
eighth segments in the second example, AGTA can capture the
car and ignore the distant objects, and the two other methods
still focus on the noisy distant visual regions. These analyses
validate that AGTA can capture a salient map with sounding
objects when the two modalities are related; otherwise, AGTA
can prevent the interference of semantic objects when the two
modalities are unrelated.

In addition, we rank the attention weights to analyze the
most associated segment. In the two examples, we find that
DIMA would opt for the information of the other modality to
improve modality fusion performance. However, CMRA [28]
prefers to utilize the information of its own modality which
limits the modality fusion and the prediction accuracy.

2) Cross-Modality Localization: In this part, we perform
the quantitative and qualitative evaluations to compare our
DCMR method with other methods.
Quantitative Evaluation. Table II shows the comparisons
of our DCMR method with three state-of-the-art methods,
namely, DCCA [61], AVDLN [21], and DAM [27] on the

TABLE II
COMPARISONS OF ACCURACY (%) OF OUR METHOD WITH DCCA,

AVDLN, AND DAM ON THE CROSS-MODALITY LOCALIZATION TASK.

Methods A2V V2A Average

DCCA [61] 34.1 34.8 34.5
AVDLN [21] 35.6 44.8 40.2

DAM [27] 47.1 48.5 47.8
Ours 56.0 56.2 56.1

TABLE III
EFFECT OF THE AGTA MODULE ON THE ACCURACY(%).

Methods Fully-supervised Weakly-supervised

w/o AGTA 76.6 71.7
AVTrans[24] 75.8 68.1
AGVA [21] 77.1 72.1
AGSCA [28] 78.0 72.6
AGTA w/o LSTM 78.0 72.3
AGTA w/o MFB 77.6 73.0
AGTA w/o channel 78.8 71.9
AGTA w/o spatial 77.5 69.5
AGTA 79.6 74.3

cross-modality localization task. For a fair comparison, we
use the same settings as previous methods. AVDLN essentially
measures the Euclidean distance of audio and visual features.
AVDLN and DCCA utilize the local segments to compute
the correlation of two modalities, and DAM uses the global
features obtained by temporally averaging self-attentive query
features to check each segment of the other modality. Un-
fortunately, these methods neglect to explore the dense inter-
modality relationship. Our method deeply explores the cross-
modality correlation based on our DIMA module. Specifically,
our method improves the accuracy from 47.1% to 56.0% on
the A2V task, and from 48.5% to 56.2% on the V2A task.
Qualitative Evaluation. We show two qualitative results of
the cross-modality localization task in Fig. 8. The blue box
represents the query segments; and the red and green boxes
denote incorrect and correct predictions, respectively. In the
A2V example, the performer plays the accordion in the first
five segments. Only the first five segments contain the accor-
dion sound; however, all ten segments contain the accordion
object, and the similarity of each visual segment increases the
difficulty of locating the synchronized visual content given the
audio query. In the V2A example, a helicopter exists in the first
few visual segments, but it makes sound for all ten segments,
and the similarity of each audio segment makes finding the
synchronized audio content given the visual query more diffi-
cult. For these two challenging cases, where the segments in
the target modality have relatively high similarity, our DCMR
method can achieve the correct matching. Compared with
sparse cross-modality correlation modeling in CMRA [28], the
dense relationship of audio and visual features exploited by our
DCMR is more effective in locating synchronized segments.

D. Ablation Studies

In this section, we verify the effectiveness of the AGTA
module, the DIMA module, the DFA module, and the UDL
through ablation studies.
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CMRA*

DCMR

A2V V2A

Fig. 8. Qualitative comparisons of DCMR with CMRA*. The CMRA* is the deformation of CMRAN [28] to solve the CML task. The deformed network
is same as the DCMR expect that replacing DFA with DPA. The blue box refers to query segments. The green and red boxes represent the right and wrong
predictions, respectively.

AGVA

AGSCA

Ours

Origin

AVTrans

Fig. 9. Qualitative comparisons of AVTrans [24], AGVA [21], AGSCA [28],
and our AGTA. The examples in the first three columns are the audio-visual
event segments, where the audio and visual semantic contents are same.
The ukulele, sheep, and baby are making sound in these examples, and our
method can more exactly and tightly localize the sound sources compared
with other methods. In addition, the examples in the last three columns are
the background segments, where the audio and visual contents are different.
In details, the rat, cat, and dog occur in the last three columns’ visions, but
they do not make a sound. Our AGTA can prevent from the interference of
the semantic objects in these cases, which is helpful to infer the background
segments.

Effect of the AGTA Module. In our work, the AGTA module
is proposed to enhance the visual features with comprehensive
guidance from audio signals. To validate this module, we
compare our method with several different settings for audio-
guided attention, and the corresponding results are reported
in Table III. “w/o AGTA” refers to replacing the AGTA
module with spatial average pooling. “AGVA”, “AGSCA”, and
“AVTrans” represent replacing the AGTA module with the
audio-guided attention module from [21], [28], and [24],
respectively. When removing the AGTA module, the accuracy
of our method drops by 3.0% and 2.6% for fully- and weakly-
supervised settings, respectively. These performance drops are
proof that the effective guidance with audio information can
remarkably improve the localization capability of the deep

model. In addition, the performance of AGTA is obviously
higher than those of AGVA and AGSCA by at least 1.6% and
1.7% for fully- and weakly-supervised settings, respectively.
This finding indicates that more fine-grained guidance can
obtain better visual representations. In addition, compared with
AGTA, the performance of “AVTrans” remarkably decreases
by 3.7% and 6.2% in the two respective settings. The reason is
that the method ignores channel-wise attention and temporal
modeling is limited to adjacent segments. Moreover, we deeply
analyze our AGTA module by deleting the attention block
separately: “AGTA w/o LSTM”, “AGTA w/o MFB”, and
“AGTA w/o channel”. The experimental results show that
every attention block contributes to the final performance of
our proposed AGTA module (comparing the last four rows in
Table III).

Furthermore, we qualitatively compare the attention maps
of AGVA [21], AGSCA [28], AVTrans [24] and our AGTA
as shown in Fig. 9. For the first three columns, compared
with AGVA, AGSCA, and AVTrans, our AGTA method can
localize the sound sources more exactly and tightly. However,
the attentions of AGVA, AGSCA, and AVTrans are spread over
different background regions, hence limiting the performance
of predicting event classes. The last three columns illustrate
the cases that do not contain an audio-visual event. The fourth
and sixth columns are the out-of-screen examples, which mean
that the rat and dog do not make a sound, but a person’s
voice is heard out of the screen. Compared with the three
other methods, AGTA can prevent interference from semantic
objects, which is helpful in inferring the background segments.
Effect of the DIMA Module. We conduct an ablation study
to verify the effectiveness of the DIMA module by comparing
the following different settings: removing the DIMA module
(“w/o DIMA”); directly replacing the DIMA module with
HAN [62] and CMCA [23]; replacing the DIMA module
with modified FGNL [43] (FGNL*), where we use the dot
product to compute the intra-modality correlation of & and
 G , and use the pairwise function in [43] to compute the inter-
modality correlation of & and  H . These two correlations are
concatenated along the temporal dimension to output the total
correlation, which is fed into a softmax function to obtain
the attention map. We multiply the attention map and +G,H to
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CMRA

DIMA

Input

(a)Qualitative comparisons of CMRA and DIMA

(b)Attention map of CMRA

(c)Attention map of DIMA

Helicopter Helicopter Helicopter Helicopter Helicopter Helicopter Helicopter Helicopter Helicopter Helicopter

Male Speech

Segment

Male Speech Male Speech Male Speech Male Speech Male Speech Male Speech Male Speech Male SpeechBG

Fig. 10. Figure (a) shows the comparisons of CMRA [28] and our method DIMA. A query segment is highlighted with the read box, and the segments
with top-5 attention weights are highlighted with blue boxes. Figure (b) and (c) separately denote the attention maps of CMRA and DIMA for each visual
segment. The vertical axis represents the segments of visual query (&), and the horizontal axis represents the segments of key, where 01-010 ( H) denote the
audio part of key, and E1-E10 ( G ) denote the visual part of key. For each row, the original attention weight is renormalized in [0, 1] just for visualization.
We can find that our DIMA enables to obtain richer information and build the inter-relationship between two modalities. However, CMRA tends to leverage
the segments of the own modality limiting the fusion of two modalities.

obtain the relative response, and repeat the above operation by
rolling  H along the channel axis yielding the final response.
The final features are achieved by applying the MoSE [43]
to the final response; replacing the DIMA with modified
GNL [42] (GNL*), where we take the & and 20C ( G ,  H) as
inputs of GNL; replacing the DIMA module with CMRA [28]
(“CMRA”), in other words, replacing the full channel pair
product (FCPP) operation with the dot product operation; and
our method (“DIMA”). The corresponding results are shown
in Table IV. When removing “DIMA”, the performance drops
for fully- and weakly-supervised localization. This implies
the importance of inter-modality attention. Comparing the
rows of “HAN” with those of “DIMA” in Table IV, the
accuracy of “DIMA” is apparently higher. HAN [62] simply
sums up the results of the self-attention and cross-attention
to model the cross-modality relationships. In contrast, our
DIMA temporally concatenates the two modality features and
introduces a DFA module to densely model the cross-modality
correlation and extract the audio-visual channel correlation. In
addition, the performance of “CMCA” [23] is also limited.
First, “CMCA” uses LSTM, which has a limited temporal
receptive field, to model the temporal correlation between
two modalities, whereas our DIMA considers all the temporal
inputs when computing the attention. Second, we introduce a
full channel pair product to model the audio-visual correlation,
which is omitted by “CMCA”.

Comparing the rows of “FGNL*” with those of “DIMA” in
Table IV shows that if we replace DIMA with FGNL*, the
performance will decline from 79.6%/74.3% to 77.2%/73.7%.
The main reason for this reduction is that DIMA can build
correlations simpler and more effectively. In detail, FGNL*
divides the channel-wise correlations into multiple groups and
each of them is independently processed to update the features
many times; however, our DIMA updates the features only

TABLE IV
EFFECT OF THE DIMA MODULE ON THE ACCURACY (%).

Methods Fully-supervised Weakly-supervised

w/o DIMA 77.5 71.2
HAN [62] 76.1 72.1

CMCA [23] 76.4 66.8
FGNL* [43] 77.2 73.7
GNL* [42] 78.0 73.7
CMRA [28] 78.2 72.7

DIMA 79.6 74.3

one time by summing up these correlations with different
weights and then linearly combining the two modality fea-
tures. In addition, a modified squeeze-and-excitation scheme
is used to restore the original channel dimensions in FGNL*,
which may result in confusion. However, DIMA can keep
the original feature architecture without a similar operation
which can obtain more accurate localization. For GNL*, there
is also a performance drop, i.e., from 79.6%/74.3%(“DIMA”)
to 78.0%/73.7% (“GNL*”). The reason might be that taking
as the key each element obtained by collapsing all dimen-
sions into one dimension may introduce potential confusion,
whereas the DIMA uses the feature vector as the key, which
can retain the original feature architecture.

Comparing the rows of “CMRA” with those of “DIMA”
in Table IV shows that our method is superior to [28] in
terms of the performance improvement (1.4% and 2.5% for
two supervised settings). The reason is that the full channel
pair product (FCPP) applied for dense fusion attention (DFA)
in DIMA can obtain richer information than the dot product
operation used for multi-head attention (MHA) in CMRA,
thereby enhancing the representation capability.

Next, we qualitatively compare the cross attention modules
of CMRA [28] and DIMA as shown in Fig. 10. Essentially,
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TABLE V
EFFECT OF THE DFA MODULE ON THE ACCURACY (%).

Q& G Q& H Fully-supervised Weakly-supervised

MHA MHA 78.2 72.7
DFA MHA 78.7 73.1
DFA DFA 78.5 73.6

MHA DFA 79.6 74.3

this experiment compares the effect of the fully channel pair
product and dot product operation in DIMA. A query segment
is highlighted with the red box, and the segments with the top-
5 attention weights are highlighted with blue boxes. We also
illustrate the attention maps of the two models in the right
of Fig. 10. In Fig. 10(b), we observe that CMRA tends to
leverage the segments of the own modality and utilize very
little information from the other modality. This phenomenon
is intuitive because the query would like to correspond with the
own modality part of the key, which is not helpful for modality
fusion. In contrast, our proposed DIMA (see Fig. 10(c))
enables one to obtain richer information and exploit the inter-
relationship between two modalities by using full channel pair
product computation. As shown in Fig. 10(a), the helicopter is
visually small in the third segment, CMRA mostly uses only
the visual features (all blue boxes are in the visual modality),
whereas our DIMA can leverage the strong audio information
of the helicopter (four green boxes are in the audio modality),
which is useful for event predictions.
Effect of the DFA Module. In our DIMA, we use MHA for
& and  G , and DFA for & and  H . The reason is that &
and  G are the same modalities, and & and  H are different
modalities. We apply DFA to explore the dense inter-modality
relationship and try to align  G and  H . Table V reports the
corresponding ablation study. The comparison of the fourth
row with the last row shows that if DFA is used for & with
 G and  H , the same correlation weight computation would
harm the performance. In addition, comparing the second row
with the third and fourth rows, DFA still has an advantage for
localizing the event. Overall, the present method is beneficial
for aligning the two modalities and obtains the best accuracy
(see the last row).
Effect of the UDL. In this work, we introduce a unimodal
discrimination loss on the middle-level visual features, which
is combined with the common event localization losses with a
parameter _. Table VI shows the accuracy of our network with
different _ = [0, 0.02, 0.04, 0.06, ..., 0.1]. When _ = 0.1 and
_ = 0.08, our method achieves the best performance for fully-
and weakly-supervised event localization. When removing the
UDL, i.e., _ = 0, the accuracy will drop by 1.2% and 0.6%
for the fully- and weakly-supervised settings, respectively.
This observation verifies the effectiveness of the UDL. By
analyzing and comparing the classification results without and
with the UDL, we observe that some categories with similar
sounds are better classified with the UDL. This finding further
shows that the representations learned by our network with
the UDL are more discriminative. In addition, we add the
unimodal discrimination loss to the audio branch, but we do
not obtain the expected effect. The reason might be that visual

TABLE VI
IMPACT OF THE WEIGHT _ IN UDL ON THE ACCURACY (%).

Weights Fully-supervised Weakly-supervised

_ = 0.00 78.4 73.7
_ = 0.02 78.5 72.8
_ = 0.04 78.2 72.6
_ = 0.06 78.1 73.4
_ = 0.08 79.2 74.3
_ = 0.1 79.6 72.7

features (in four dimensions) have more information than
audio features (in two dimensions). In other words, compared
with audio features, visual features have a larger excavation
space via the unimomal discrimination loss.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a dense modality interaction
network for audio-visual event localization. Our standing point
is to fuse the audio and visual modalities elegantly and
deeply in the stages of audio-guided fusion and cross-modality
fusion. We first propose an audio-guided triplet attention
module to highlight the event-relevant regions in the visual
features by applying fine-grained attention in the channel,
temporal, and spatial dimensions. Then, we develop a dense
inter-modality attention module to effectively fuse the audio-
visual features via dense fusion attention, where the sparse
correlation weight computation method is enhanced with our
proposed full channel pair product. To exploit the localization
capability of the unimodal and fused features simultaneously,
we also introduce a unimodal discrimination loss function,
which is combined with the common AVE event localization
losses. Various experiments show that our network is superior
to state-of-the-art methods in fully- and weakly-supervised
AVE localization by a large margin. To further validate the
superiority of our dense inter-modality attention for exploring
the cross-modality correlation, we propose a dense cross
modality relation network for cross-modality localization. The
experimental results illustrate that our method achieves better
performance.

In this work, we experimentally found that the unimodal
discrimination loss on the middle-level visual features can
work well, but no improvement was observed when adding
this loss to the audio features. In the future, we would like to
explore more appropriate methods to utilize the unimodal loss.
We would also like to collect a large-scale AVE localization
dataset that contains a larger number of videos and event
categories to facilitate related studies. Furthermore, it would
be interesting to extend our attention methods to other audio-
visual problems, e.g., audio-visual separation and representa-
tion learning.
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