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Abstract: This paper presents a novel algorithm for identifying quadric surfaces from scanned mechanical models. We make several 

important improvements over the existing variational 3D shape segmentation framework, which utilizes Lloyd’s iteration. First, 

instead of using randomized initialization (which likely falls into non-optimal minimum), the RANSAC-based initialization approach 

is adopted. Given a good initialization, our method converges quickly than previous approaches. Second, in order to enhance the 

stability and the robustness, we carefully modify the distortion-minimizing flooding algorithm by using seed regions instead of seed 

triangles. Third, the geometric constraints are introduced into the optimization framework. The segmentation quality is further 

improved. We validate the efficiency and the robustness of our proposed method on various datasets, and demonstrate that our 

method outperforms state-of-art approaches. 
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1  Introduction 

Triangulated mesh surface is one of the most 
important representation of 3D objects in both 
computer graphics and computer vision. Mesh 
segmentation can give a semantic description and 
understanding of 3D shapes, which plays a central role 
in various applications, such as part-based recognition[1] 
and modeling[2], 3D mesh compression[3-5], 
deformation[6], remeshing[7-8], and so on. 

Mesh segmentation has been gained a lot of focus 
in the past decades. Most previous segmentation 
algorithms are based on hierarchical clustering or 
feature-based techniques. Huber et al.[1] first 
proposed the variational shape approximation (VSA) 
framework to partition 3D mesh into a minimal set of 
planar patches while minimizing the fitting errors. 
Wu and Kobbelt[9]. extended VSA framework by 
allowing for several different primitives (e.g., 
spheres, and cylinders) to represent the geometric 
proxy. Other primitives, such as ellipsoidal surfaces[10], 
developable patches[11], general quadrics[12-13] are 
also studied. 

Inspired by recent works in shape detection of 

point clouds[14-15], we present several improvements 
of the VSA framework for quadric surfaces 
recognition from mechanical parts. In our 
framework, the RANSAC-based method[16] is 
applied to initialize the initial partition, instead of 
traditional strategy that randomly selects a set of 
triangles for initialization. The advantage of 
RANSAC-based initialization is that it gives a good 
initial guess of the final segmentation, and thus can 
obtain a better segmentation without using region 
teleportation operator. Furthermore, the VSA 
framework only considers the local fitting error of 
each patch, which cannot find the global relationship 
between patches. Our improved framework can also 
automatically extract simple geometric constraints 
to force the segmentation result to follow the salient 
structure of shapes. The main contributions of this 
work are as follows: 

(1) Replacing the random strategy with RANSAC- 
based strategy for initialization. 

(2) Introducing some geometric constraints into 
VSA framework to improve the quality of 
segmentation. 

(3) Modifying the distortion-minimizing flooding 
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algorithm[7] to enhance the stability and robustness of 
partitioning. 

2  Related work 

In this section, we briefly review two types of mesh 
segmentation algorithms that are closely related to our 
work, as well as the primitive detection algorithms. 
More comprehensive discussions of mesh 
segmentation can be found in survey papers[17-18]. 

2.1  Greedy approaches 

This category of approaches mainly includes 
region growing, hierarchical clustering and 
hierarchical decomposition. In region growing 
approaches, a set of faces are first selected as seeds 
of regions, and then those seeds keep growing until 
all faces of the mesh are assigned to a region. Local 
surface properties, such as normal and principle 
curvatures, are usually used to guide the growing 
process[19-21]. In hierarchical clustering approaches, 
each face of the mesh is first regarded as a single 
region. At each clustering step, two adjacent regions 
with least merging error are merged to construct a 
new region[22-23]. In hierarchical decomposition (or 
mesh splitting), mesh surfaces are segmented into 
meaningful components in a top-down manner, 
which is opposite to hierarchical clustering[24-26]. 
The main characteristic of greedy approaches is that 
a triangle element is assigned to a region and will 
not be changed in the later process. 

2.2  Variational approaches 

Another opposite strategy is iterative optimization, 
also known as variational approach. Huber et al.[1] 
proposed a variational geometric partitioning 
framework for shape approximation. In their 
approach, the plane is used as basic geometric proxy. 
A new appropriate error metric L2,1 was introduced to 
measure the total approximation error. Due to the 
NP-hard nature of this problem, a novel iterative 
optimization method, which is an efficient extension 
of Lloyd’s algorithm[27], was developed. Practically, 
this method involves two steps: geometry 
partitioning(the original faces are divided into 
non-overlapping connected regions via a distortion 
minimization flooding algorithm); proxy 
fitting(computing an optimal geometric proxy for 
each above region). This work used only planes as 
basic primitive, which leaded to produce too many 
planar regions for segmentation purpose. Several 
researchers extended this framework via introducing 

higher order or special type of geometric primitives, 
e.g., ellipsoids[10], simple quadrics such as spheres, 
cylinders[9], and general quadric surfaces[12-13]. 

2.3  Shape detection from point-cloud 

Schnabel et al.[16] proposed a state-of-the-art 
RANSAC-based algorithm to detect basic shapes 
from the input point cloud. This algorithm is robust 
for outliers and noise because of the nature of 
RANSAC. However, this approach is scale-sensitive, 
that is, it is less efficient on the case of input point 
cloud containing some small shapes. Furthermore, 
such a local approach can be unreliable, especially 
in regions of biased noise or incomplete data, and 
thus lead to global inconsistency. To solve this 
problem, Li et al.[14] proposed GlobFit method that 
starting with the results of RANSAC-based 
algorithm[16] and enforce these primitives along with 
their global mutual relations. GlobFit proceeds from 
a coarse to fine scale, specifically, performs 
regularization after complete detection, and then 
re-detection in the remaining unclaimed points until 
the remaining points are little or a maximum number 
of iterations is reached. Differently, Oesau et al.[15] 
proposed planar shape detection algorithm that 
performs detection and regularization in tandem. In 
our approach, we also utilize RANSAC for 
initialization purpose. 

3  Problem formulation 

Given an input mesh   1

n
i i

M t


  (where n is the  

number of triangles), and a desired number k     
of regions (or clusters), we denote a segmentation  

of M by  
1

k

j j
R R


 , where 

1, , jj k
R M

 
  and 

Øi jR R   for any i j . Then each region Rj is  

approximated by a geometric proxy Pj. The total 
approximating error of a segmentation is defined by 

     
1 1

, , ,
i j

k k

j j i j
j j t R

E R P E R P E t P
 

  


   (1) 

where  ,i jE t P  measures the distance of a triangle to 

a proxy. 

3.1  Triangle-proxy distance 

For triangle-proxy distance, we follow the definition 
given in the work[13]. A proxy Pj is described by a  

general quadric surface   T 0f X   C F , where 

“·” is the matrix product,  T, ,X x y z  is a 3D point, 
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 T0 1 9c , , ,c c C  is the coefficient vector, and 
2 2[1, , , , , , , ,x y z x xy xz yF 2 T, ]yz z  i s  the  same  

dimensional vector. Similarly, both Euclidean distance 
and normal deviation are considered for triangle-proxy 
distance. 

       2 2,1, , , ,
L L

E t P E t f E t f E t f     (2) 

where 2L
E  measures the squared Euclidean distance 

between triangle t with proxy f, 2,1L
E  calculates the  

normal deviation from t to f, and  is the balance 
weight. 
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      (3) 

where nt is the unit normal vector of t, and  is the 
integral unit. 

4  Proposed algorithm 

In this section, we describe the implementation 
details of the presented algorithm. Our segmentation 
algorithm consists of preprocessing, initialization 
and constrained optimization. The goal of 
preprocessing is to unify the scales of different 
meshes. The purpose of the improved initialization is 
to give a relative good initial partition, which can 
lead to faster convergence speed. Note that this 
initialization cannot ensure the identical number of 
segments during multiple executions for the same 
input mesh, due to the random nature of RANSAC. 
The key step of this algorithm is the iterative 
optimization that finds a optimal segmentation 
through energy minimization. 

4.1  Preprocessing 

In this step, the input mesh M is first uniformly 
scaled into the unit cube [0,1]3. In order to improve the 
robustness of proposed algorithm, we also subdivide 
mesh so that all the edges of M is shorter than the 
specific length (default=0.03)[28]. This approach could 
remove the elongated triangles with long edges, which 
will influence the accuracy of segmentation. 

4.2  Initialization 

In classical VSA framework, random strategy is 
often used to produce the initial configuration. In this 
work, the RANSAC-based method is adopted for this 
purpose. First, the dual point set S of M is obtained, 

where the barycenter of the triangle face correspond to 
each point in S. The normal of each point is equal to 
the normal of its corresponding triangle facet. After 
RANSAC-based partitioning, we can get an initial 
segmentation of S, and an initial segmentation of M 
can also be obtained because the triangles of M and 
points of S are the one-to-one correspondence 
relationship. The result of RANSAC is non-connected 
and leaves some unclassified points, therefore, several 
further steps is needed to obtain the connected and 
non-overlapping regions. 

(1) Remove non-connected regions. This step needs 
to traverse all the regions, and for each region Ri, its 
connectivity is first checked. If it is connected, then 
this region keeps unchanged; if the region has two 
connected components, then a new cluster is created; 
if the region has more than two connected components, 
and the connectivity ratio of the second largest 
connected components is larger than 0.25, then the 
largest and the second largest connected components 
are reserved; otherwise, only the largest connected 
component is reserved. After this process, all the 
clusters are connected. 

(2) Process unclassified faces. Through RANSAC, 
there are some faces have not been assigned to any 
cluster. In addition, some new unclassified triangles 
appear after the above operation. A simple and naive 
strategy that progressively assign these triangles to 
adjacent clusters is utilized. Consequently, all the 
triangles in the mesh is partitioned into the connected 
and non-overlapping regions. 

4.3  Iterative optimization 

In our approach, the mesh segmentation is 
formulated as an energy minimization problem, 
which can be solved via a simple extension of 
Lloyd’s algorithm, i.e., distortion-minimizing 
flooding algorithm[7]. This algorithm mainly includes 
two steps, i.e., partitioning and surface fitting, and 
they are in tandem. Given the number of segments of 
the specific mesh, the region merging or region 
insertion may be needed to adjust the number of 
partitions because of the random nature of above 
initialization. Furthermore, the geometric constrained 
optimization is introduced into surface fitting to 
improve the quality of the segmentation, especially 
for the noisy meshes. 

(1) Partitioning. Before performing the re-grouping, 
a seed region is first found for each region of R. In 
VSA framework, it usually use the triangle with the 
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smallest fitting error as the seed triangle. However, 
this approach is not robust for models with noises, and 
this is why that QSF[13] is noise sensitive. To improve 
the robustness, we propose to use seed region instead 
of seed triangle, which is more stable and robust to 
noise. In detail, for each cluster Ri, we compute first m  

( 10m  ) smallest fitting error triangles   1

m
i i

T t


 , 

and collect corresponding neighbors   1

m
i i

N N


  of  

these triangles, where Ni is a set of neighboring 
triangles of ti. The number of triangles in Ni is equal to  

0.1 jR , where jR  is the number of triangles in  

Rj. For each Nj, its area-average fitting error is first 
calculated, hereafter, Nj with the smallest area-average 
fitting error is regarded as seed region and is used for 
following re-grouping. 

A global priority queue Q is dynamically maintained 
during the partition step, whose priority is equal to the 
distance of the triangle-proxy pair P(ti,Pj). Each 
triangle has two properties, i.e., visited (default as 
‘false’) and cluster index (default as –1), denoted by  

,v idx . First, the triangle-proxy distances are 
computed for the triangles in seed regions of all 
clusters, and then insert them into Q. For these seed 
triangles, v true and idx is set as the index of 
corresponding proxy. Then, we progressively pop the  

top element  ,P t P  of Q with the smallest triangle  

proxy distance, and check the proxy assignment of 
triangle t . If 1idx   , we do nothing; otherwise, idx 
is set as the index of current proxy P . Afterwards, all 
the unvisited incident triangles (i.e., v false ) of t  
in the current proxy P  are tested, and these new 
triangle-proxy pairs (up to two) are pushed into Q. 
The growing process stops when the priority queue is 
empty, and then a new partition of the input mesh is 
obtained. 

(2) Surface fitting. Once a new cluster is obtained 
after the above operation, we assign an optimal proxy 
Pj to each region Rj. The planarity of region Rj is first 
computed using principle component analysis 
(PCA)[29]. The definition of planarity is 

  1

1 2 3
jp R


  


 

           (4) 

where 1 2 30   ≤ ≤ ≤  denote the three eigenvalues 
of the covariance matrix constructed on the vertices 
and barycenters of all the triangles of Rj. If the 
planarity is smaller than a threshold (default=10–6), the 
region Rj is fitted by a plane. Otherwise, a quadric 
surface is fitted for this region. Note that we use PCA 

to specify whether the region is a plane or not, instead 
of the absolute fitting error of plane used in the 
work[13]. The reason is that PCA is more robust for 
noisy models. 

(3) Region merging. When the number of current 

regions is larger than κ  (the desired number of 

regions in the model), some pairs of adjacent 

regions are merged into larger ones. For example, 

when adjacent regions are both planes, the angle θ 

between their normals is calculated. If θ≤5°, these 

two regions are considered coplanar and can be 

merged into a larger plane. Otherwise, the following 

method is carried out: computing the fitting error Eij 

for each pairwise adjacent components (Ri, Rj), and 

then merging the pair with the smallest increasing  

error, i.e.,    ,
min

i j
ij i jR R

E E E  , where Ei and 

Ej are the fitting errors of region Ri and Rj, 
respectively. Finally, a new proxy is fitted to this new 
component. 

(4) Region insertion. On the contrary, the region 
insertion operator is employed when the number of 
current regions is less than κ or the fitting error of a 
region is larger than a threshold. A new region will 
be inserted into the “worst-fitted” region. In detail, 
we first traverse all the current regions and find the 
region Rj with the maximal area-average fitting error 

max
j

j
j

R

E

A

 
 
 
 

, where 
jR

A  is the total area of all the  

triangles in region Rj. Then, the face with the 
largestfitting error in Rj is regarded as seed face of 
new region Rnew, and a planar primitive is used for 
fitting Rnew. Differently from the previous work[1,13], a 
local re-grouping and surface fitting operator over Rj 
and Rnew is applied, instead of the global Lloyd 
iteration. 

(5) Constrained optimization. The mechanical 
models usually contains many constraints, e.g., 
parallel/orthogonal planes, coaxal cylinders, and so 
on. The normals and axes of planes and cylinders 
might not be strictly parallel or orthogonal after the 
optimization stage, especially for noisy models. We 
adapt the constrained optimization algorithm 
proposed in the work[14] to enforce the constraints 
between planes, cylinder, and cones. 

5  Experimental results 

To evaluate the effectiveness and the performance 
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of the proposed algorithm, we conduct various 
experimental results on a set of mechanical models. 
All the results shown in this paper are tested on a PC 
with 3.60 GHz i7-4790 Four CPU, 16 GB memory, 
and a 64-bit Windows 7 operating system. 

5.1  Parameters setting 

The classical RANSAC- based method[16] has 
three free parameters:  is the maximum normal 
deviation between one point and the shape,  is the 
Euclidean tolerance error distance of a compatible 
point, and  is the minimal shape size. For 

convenience, we use empirical values of the first two 
parameters, i.e., 0.9 and 0.02. Controlling  can 
roughly adjust the number of regions. Fig.1 shows 
the recognition results of a part with increasing 
minimal shape sizes. A larger  generally results in 
less regions, and larger fitting errors. We choose 

50,100 or 200τ   for all examples shown in this 
paper. In practice, the user can tune this parameter to 
obtain a good guess. However, tuning  cannot 
precisely control the number of segmented regions. 
Therefore, another parameter κ (the number of regions 
in the model) is introduced. 

         

(a)                      (b)                    (c)                    (d)                     (e) 

Fig. 1  Segmentation results with increasing minimal shape sizes. Top and bottom rows are two different views of results. (a) Input. 

(b) τ=50, the number of region is 28. (c) τ=100, the number of region is 28. (d) τ=200, the number of region is 22. (e) τ=500, 

the number of region is 19. 

5.2  Validity 

In order to verify the validity of our method, we 

demonstrate segmentation results of models with 

various structures and complexities, as shown in Fig.2. 

It is shown that RANSAC can give good initial guess, 

especially in the recognition of planar regions. Based 

on this good initial guess, our method can obtain an 

improved result quickly and robustly.  

In addition, some experiments are done to 

demonstrate the power of geometric constraints. 

Random noise is added into the clean models, and 

then we compare segmentations of those noise models 

with/without using constraints. The segmentation 

results are shown in Fig.3. We also statistic three 

metrics, i.e., fitting error, hamming distance, and 

consistency error, which are shown in Table 1. The 

last two metrics have been widely used for quality 

evaluation of image and shape segmentation[3]. 

Adding noise to the input mesh that uses the following 

strategy: selecting parts of vertices randomly, and then 

computing the new coordinate for each selected vertex 

v using Eq.(5). 

 
Fig. 2  More segmentation results of our method. Each group 

includes input model, initial segmentation via RANSAC, 

and final result. Models are from top to bottom: blade, 

rolling stage, oil pump, fandisk and part4. Please see 

Table 3 for the parameters and timings. 
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(a)                          (b)                        (c)                         (d) 

Fig. 3  Comparison of segmentation results with/without using constraints (Noise parameters: 0.005, and the vertex ratio is 50%). 

(a) Input model. (b) Ground truth. (c) Without constraints. (d) With constraints. 

Table 1  Statistics of fitting error, HD and CE. For each model, 
the first row without using constraints, and the 
second row using constraints. 

Model Error HD(%) CE(%) 

Joint 
1.578 3.88 4.39 

1.572 0.05 0.09 

Shell 
0.975 2.16 3.97 

0.967 0.007 0.009 

 

* *noise vv v σ ω n             (5) 

Where  is the scale factor (default = 0.01) and can 
be changed, [ 1,1]ω  is uniformly distributed 
random number, and nv is the unit normal vector of 
vertex v. 

The definitions of hamming distance and 
consistency error are described in the following.  
Given two segmentation results  1 2, , , nR R R R   

and  1 2
ˆ ˆ ˆ ˆ, , , nR R R R   with the same number of 

regions, where R̂  is the ground truth. The hamming  
distance (HD) is defined by 

 
1 1

1ˆ ˆ ˆ, \ \
2

n n

i i i i
i i

HD R R R R R R
M  

 
  

 
    (6) 

where   means the total area of all faces in the 
corresponding set, and the “\” symbol is the set 
difference operator. Note that the HD is a symmetric 
measurement. 

Denoting the segment in R that contains face fi by 
S(R,fi), the local refinement error can be defined as  

 
   

 

ˆ, \ ,
ˆ, ,

,

i i

i
i

S R f S R f
E R R f

S R f
 . Then, the (Global)  

consistency error (CE) is defined as 

     1ˆ ˆ ˆ, min , , , , ,i i
i i

CE R R E R R f E R R f
M

 
  

 
  (7) 

where M  is the number of faces in mesh M. 

In our work, the segmentation of the clean models 
are taken as ground truth to compute CE and HD. The 
results without using constraints (Fig.3 (c)) will fail in 
flat region, and be sensitive to noise. Fig.3 (d) can 
give an almost right result except have few burrs due 
to very strong interruption. In Table 1, the three 
indicators (i.e., fitting error, HD and CE) are both 
decreased, as demonstrated, when using geometric 
constraints. Especially, the CE and HD are very small 
(<0.1%) after adding normal constraints, which means 
our segmentation results over noise models are nearly 
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consistent with that of corresponding clean models. 

Another advantage of introducing geometric 
constraints into primitive fitting is to improve the 
segmentation boundary. In Fig.4(a), there are some  

zigzag boundaries between clusters. We reprocess the 
surface fitting subject to normal constraint, and then 
perform regrouping again. The boundaries are 
smoothed as shown in Fig.4(b). 

 

(a)                                (b)                               (c) 

Fig. 4  Improvement of segmentation via geometric constraint. (a) Original result. (b) The closeup of results. (c) Improved result. 

5.3  Seed triangle VS seed region 

In this work, there is the observation that using 
seed regions is more stable and robust than using 
seed triangle for noise models. The comparison of 
these two strategies is shown in Fig.5. The fitting 
errors are both decreasing with the iterative process. 
However, dotted line (using seed triangle) has greater 
oscillation than solid line (using seed region). In 
classical VSA framework[1], the seed triangle is the 
most similar to its associate proxy, that is, finding the 
one triangle with the smallest distortion error by 
traversing all triangles in corresponding region. It 
can be approximate for only plane primitive. But for 
general quadric surfaces and noise models, a seed 
region (i,e, a set of triangles) that is more similar to 
its proxy is more reasonable for subsequent 
re-partitioning. And, this example specifies such 
reasonableness. 

5.4  Robustness 

Many 3D meshes reconstructed from noise scanned 
point clouds contain different levels of noise. The 
robustness of our method is evaluated on several 
synthetic and real-world noise datasets, by comparing 
the difference between segmentation result and the 
ground truth. We use two metrics (i.e., hamming 
distance and consistency error) to evaluate the quality 
of segmentation. Practically, the segmentation result 
of the clean mesh is regarded as the ground truth, and 
evaluate the segmentation quality of the noise mesh 
(adding random noise into original clean mesh via 
Eq.(5). 

  
Fig. 5  The chart shows the convergence of different strategies 

of seed selection for noise “joint” model, in the case of 

using same initial segmentation. 

Given a clean mesh model (“twelve”) and 
corresponding segmentation result as the ground truth, 
we randomly select parts of vertices (the vertex ratio 
is 0%,10%,20%, ,{ }90% ) and add random noise 
( 0.01σ  ). Then, those noise modeles are segmented 
via our method, and parts of results are shown in Fig.6, 
where vertex percent of Fig.6(c) and Fig.6(d) are 20% 
and 80%, respectively. The level of noise only slightly 
influences the smoothness of segmentation results. 
Furthermore, the HD and CE of results are counted 
and shown in Fig.7. With the increase of noise scale, 
the segmentation result decrease slightly. It is easy to  
see that the HD and CE is very small ( max 0.04HD   
and max 0.08CE  ) even though 90% vertices is  

contaminated by noise. 
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(a)                 (b) 

    

(c)                 (d) 

Fig. 6  Segmentation results on the “twelve” model. (a) The 

input model. (b) Corresponding segmentation result. 

(c) and (d) Segmentation results on “twelve” model 

with different amount of noise, respectively. 

 
Fig. 7  HD and CE of Noise mesh segmentation. The dot lines 

correspond to the max value of HD and CE, respectively. 

In addition, we apply our method on the real noise 
models, and the results are shown in Fig.8. Although, 
the input meshes have some noise (i.e., geometric 
textures), out method can give a right result. 

 

(a)                                   (b)                                (c) 

Fig. 8  Noise mesh segmentation. (a) Original model. (b) and (c) are two views of segmentation results. 

5.4  Comparison 

Fig.9 compares our segmentation results with 
QSF[13] using the “bone” model. The running time and 
fitting errors are shown in Table 2. Due to the better 
initialization and geometric constraints, the initial 
fitting error of our method is smaller (see Table 2 
(Error 0)) and the segmentation quality is higher 
(Table 2 (Error 1)). In order to further comparison, the 
converge rates of our method and QSF[13] are also 
shown in Fig.10. Because the initial segmentation 
roughly capture structure of mesh, our method can 
converge faster than QSF. Moreover, our method can 
steadily converge due to the strategy of seed region, 
while some fluctuations exist in QSF. 

 
Fig. 9  Comparison of segmentation results with different 

initial methods. Left column: initial segmentation. 

Right column: final segmentation. 

Table 2  Statistics of fitting error and running time.  

Model Error 0 Error 1 Time(s) 

Bone 
0.2483 0.0141 7.939 
0.0339 0.0140 1.467 

Chess 
0.0578 0.0087 2.214 
0.0325 0.0070 0.890 

Sample 
0.2354 0.0032 4.085 
0.0269 0.0030 0.908 

Note: Error 0 and error 1 are fitting errors of initial 

segmentation and last segmentation, respectively. For each 

model, first row is QSF's result[13], and second row is our result. 

 
Fig. 10  Converge rate of our method and QSF[13] in different 

models. The solid line stands for our method and 

dotted line stands for QSF. 
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Fig.11 shows the comparison of our method with 
the state-of-the-art methods: VSA[1], QSF[13], 
HFP[23]. The result of VSA is worst, because it only 
uses plane for fitting, which is imprecise to fit 
non-plane parts of model. QSF method uses random 
initialization strategy, which is easy to fall into 
local optima. As shown in Fig.11(c), the right part 
of model is as a whole, and don’t recognize detail 
of model base. HFP is a greedy hierarchical 
clustering approach, which is not appropriate to 
segment an object where the globally best fitting n 
parts need to be found. Compared with our result, 
HFP does’t give a all right solution for this 
recognition problem. 

Table 3  Statistics of models. |F| is the number of triangles of 
input mesh; |R| is the number of parts; last column is 
running times of segmentation process. 

Model |F| (K) |R| Time(s) 
Bone 30 5 1.467 
Chess 8.5 10 0.890 

Sample 26.7 21 0.908 
Fandisk 13.8 21 1.497 

Rolling sta. 100 23 2.010 
Oil pump 100 78 15.43 

Blade 390 37 5.120 
Part4 143 93 14.324 

Master cyl. 100 20 5.120 
Grayloc 69.5 39 4.654 
Carter 100 38 6.147 

Dynamo 92.5 28 3.524 
 
 

   

(a)                  (b)                    (c)                   (d)                   (e) 

Fig. 11  Comparison with pervious methods on the “dynamo” model. The number of parts is 28. For HFP(d), using plane, sphere 

and cylinder for fitting. (a) Input. (b) VSA. (c) QSF. (d) HFP. (e) Ours. 

 

5.5  Application for mesh smoothing/denoising 

A simple experiment have been performed to 
demonstrate the ability of our method to refine noise 
model, as shown in Fig.12. Given a clean 3D model 
(Fig.12(a)), we randomly select half of vertices and 
add Gaussian noise along with the normal of vertices 
to obtain a noise model (Fig.12(b)). The right 
segmentation result (Fig.12(c)) of this noise model can 
be obtained via proposed method. For each region, a 
best geometric primitive is assigned to it, and then all 
the vertices of noise model are projected into those 
fitted primitives. Specifically, for a vertex in inner 

cluster, it is projected onto corresponding primitive; 
for a vertex in the boundary of two regions, it is 
projected into the boundary; for vertex in the junction 
of three regions, we first compute the intersection line 
of two regions, then compute the intersection point of 
this line and third regions. The Metro tool[30] is 
applied to measure the symmetric Hausdoff distance 
between refined model and original clean model, as 
shown in Fig.12(d) and Fig.12(e). Clearly, the refined 
model with geometric constraint have smaller 
approximation error than that without geometric 
constraint. 

   

(a)          (b)           (c)             (d)             (e)                     (f) 

Fig. 12  Mesh smoothing/denoising. (a) Original model. (b) Noise model. (c) Segmentation result of noise model. (d) Fitting 

without geometric constraint. (e) Fitting with geometric constraint. (f) Colormap. 

 

6  Conclusions 

We have proposed a novel algorithm for recognizing 
geometric parts from scanned mechanical models. 
Based on the VSA framework, the RANSAC method is 
applied to obtain a good initial configuration, instead 

of previous random initialization. Meanwhile, we use 
seed regions to guide re-grouping process, and this 
modification enhance the stability and robustness of 
the iterative optimization, especially for noise models. 
Furthermore, the geometric constraints are also 
introduced into surface fitting to force the 
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segmentation results to follow the global structure of 
the models. Various experimental results demonstrate 
the validity and robustness of our method, and it can be 
directly used for several geometric applications, such 
as mesh smoothing/denoising. In the future, we plan to 
add high-level constraints in our framework, e.g., 
symmetry. Moreover, we aim to extend this method to 
large scale building models and point clouds. 
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