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Distinguishing Between Natural and
Computer-Generated Images Using

Convolutional Neural Networks
Weize Quan , Kai Wang, Dong-Ming Yan , and Xiaopeng Zhang

Abstract— Distinguishing between natural images (NIs) and
computer-generated (CG) images by naked human eyes is diffi-
cult. In this paper, we propose an effective method based on a
convolutional neural network (CNN) for this fundamental image
forensic problem. Having observed the rather limited perfor-
mance of training existing CCNs from scratch or fine-tuning pre-
trained network, we design and implement a new and appropriate
network with two cascaded convolutional layers at the bottom of
a CNN. Our network can be easily adjusted to accommodate
different sizes of input image patches while maintaining a
fixed depth, a stable structure of CNN, and a good forensic
performance. Considering the complexity of training CNNs and
the specific requirement of image forensics, we introduce the so-
called local-to-global strategy in our proposed network. Our CNN
derives a forensic decision on local patches, and a global decision
on a full-sized image can be easily obtained via simple majority
voting. This strategy can also be used to improve the performance
of existing methods that are based on hand-crafted features.
Experimental results show that our method outperforms existing
methods, especially in a challenging forensic scenario with NIs
and CG images of heterogeneous origins. Our method also has
good robustness against typical post-processing operations, such
as resizing and JPEG compression. Unlike previous attempts to
use CNNs for image forensics, we try to understand what our
CNN has learned about the differences between NIs and CG
images with the aid of adequate and advanced visualization tools.

Index Terms— Image forensics, natural image, computer-
generated image, convolutional neural network, robustness, local-
to-global strategy, visualization.
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I. INTRODUCTION

NATURAL images (NIs) reflect real-world scenes, and
computer graphics tools can now generate virtual

but visually plausible images. Consequently, distinguishing
between NIs and computer-generated (CG) images has
attracted increasing attention and has become an important
research problem in image forensics. However, this problem
is difficult to solve because the ultimate goal of computer
graphics is to equip CG images with the same photorealism
as NIs possess. Fig. 1 shows a pair of images. At first glance,
people may have the impression that the left image is a real
photo acquired by a digital camera, and the right image is
generated from computer graphics. The truth is contrary to
this impression.

Two research directions, i.e., subjective and objective,
mainly exist with regard to the problem of distinguishing
between natural and CG images or videos. The former usually
involves psychophysical experiments, and the latter is often
based on the statistical or intrinsic properties of the two
classes. A simple and effective objective method that is
particularly suitable for CG character identification is to design
a category-distinctive scalar feature and select an appropriate
threshold to separate the two classes. Prevalent methods
for general cases (i.e., distinguishing between NIs and CG
images with various scenes and contents) follow the classical
pipeline of machine learning, which consists of two separate
phases: (1) designing sophisticated, discriminative and hand-
crafted features (almost always multidimensional features);
(2) training classifiers (e.g., support vector machine (SVM),
ensemble classifier). This pipeline usually performs well in
relatively simple datasets, such as those in which NIs are
acquired by only one or two digital cameras. However, such
methods often exhibit limited performance (to be shown
later) in complex datasets comprising images of heterogeneous
origins. An example is the challenging setting of the Columbia
dataset [1], in which we want to differentiate between NIs
collected from Google Image Search (Google) and photore-
alistic computer graphics (PRCG) images downloaded from
various websites of CG image collections. In general and as
argued by other image forensic researchers [2], [3], discrim-
inative hand-crafted features are tedious to design, and the
designed features are not necessarily the most adequate for a
given forensic problem, especially in complex and challenging
datasets.
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Fig. 1. Pair of images. On the left is a CG image, and on the right is an NI.
Both images are from the Columbia dataset [1].

Convolutional neural network (CNN) has recently obtained
notable success in computer vision and pattern recogni-
tion [4], [5]. An important reason is that CNN attempts
to automatically learn multiple levels of an appropriate
representation for a given task in an “end-to-end” manner
and from available data. This automatic feature learning
and abstraction from data makes CNN more suitable for
complex datasets (e.g., with heterogeneous origins) than
conventional hand-crafted features that are based on a set
of prior knowledge and assumptions. Inspired by the recent
success of CNN, several researchers have introduced CNN
into multimedia security research [2], [3], [6]–[8]. In our
work, we propose a new data-driven, CNN-based framework
to distinguish between NIs and CG images. The proposed
framework is different from the traditional pipeline of almost
all existing methods with two separate steps of feature
extraction and classifier training. The proposed framework
is “end-to-end” and does not require designing features
by hand.

Our work provides several contributions:
• We introduce a generic framework that uses CNN to

identify NIs and CG images. This framework can be
easily adjusted to handle different sizes of input image
patches.

• We fine tune a pre-trained CNN and subsequently design
and implement a new and improved CNN for this forensic
problem. Both CNN-based solutions outperform state-of-
the-art methods that combine hand-crafted feature extrac-
tion and classifier training.

• Our method exhibits good forensic performance in the
challenging dataset of Google versus PRCG comprising
images of heterogeneous origins and is thus close to
the real-world application. Our method also demonstrates
strong robustness against several post-processing opera-
tions, including resizing and JPEG compression.

• Unlike previous attempts to use CNNs for other image
forensic problems, we attempt to understand what our
CNN has learned about the differences between NIs and
CG images by using advanced visualization tools, which
provide interesting observations and insights for future
studies.

The remainder of this paper is organized as follows.
Section II presents relevant existing work and delineates how
our work differs from the related work. Section III describes
the dataset used for validating our method. Section IV
discusses the motivation of every step of our work, important

technical points, and the proposed network. Section V presents
the performance evaluations for our method and detailed
comparisons with existing methods. Section VI provides
interesting observations from our CNN obtained by using a
set of advanced visualization tools. Section VII shows the
conclusions.

II. RELATED WORK

A. Distinguishing Between NIs and CG Images

For the discrimination of natural versus CG images and
videos, two lines of research, namely, (1) subjective, percep-
tual studies and (2) objective studies, mainly exist.

Subjective studies involve performing a series of
psychophysical experiments to study the effects of image
properties and cognitive characteristics of human observers
on the discrimination between photorealistic and photographic
images. Farid and Bravo [9] designed and conducted a percep-
tual study, in which human observers were asked to identify
CG and photographic images of different scenes and contents.
They reported that human observers possess a reliable capa-
bility of distinguishing NIs from CG images. On the basis
of this first study, the same authors [10] focused on CG
versus photographic faces and studied the effects of image
properties, i.e., resolution, JPEG compression and color versus
grayscale. Fan et al. [11] studied the impacts of cognitive
characteristics of viewers and image properties (i.e., color and
shading). Experimental results showed that experts outperform
laypersons but only for grayscale images. Holmes et al. [12]
found that human observers have a certain degree of bias
in identifying photographic and CG portraits, and viewers
are more likely to select the former than the latter. Such
bias, however, could be significantly reduced by a small
amount of training before the main experiment. Recently,
Mader et al. [13] further enhanced this effectiveness by
introducing feedback and incentives.

Objective studies usually depend on the
statistical or intrinsic properties of natural and CG
images or videos and design efficient algorithms to separate
them. For CG character identification, a simple and popular
strategy is to find a class-sensitive quantity and select
an appropriate threshold for classification. For example,
Dang-Nguyen et al. [14] distinguished CG characters from
real ones by analyzing variations in facial expressions.
Conotter et al. [15] identified CG faces in videos by detecting
a physiological signal resulting from human pulse, which was
absent in videos of CG faces. The features extracted by such
methods can also be combined with machine learning. Dang-
Nguyen et al. [16] proposed an asymmetry-information-based
method to discriminate between natural and CG human faces
with a threshold, and this feature can be added to other feature
sets to improve their performance by using SVM binary
classification. To distinguish between natural and CG faces
in videos, Dang-Nguyen et al. [17] developed an SVM-based
method by examining the spatial-temporal variation of their
3D models. The underlying idea is that the variations in real
faces are more complex than those in CG faces. The latter
often follows repetitive or fixed patterns.
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For general cases, in which we wish to distinguish between
NIs and CG images of various scenes that are not limited
to those depicting human beings, the most common strategy
is to use machine-learning-based methods with multidimen-
sional feature extraction and classifier training. Inspired by
the generation process of natural and computer-rendered
images, specially object model, light transport, and acquisition
differences, Ng et al. [18] proposed geometry-based features
aided by fractal and differential geometry. They created an
open dataset [1] to assess this approach. Lyu and Farid [19]
proposed a feature combining first-order and higher-order
wavelet statistics for the identification of photographic and
photorealistic images. On the basis of the fact that the
hue, saturation, and value (HSV) color model is motivated
by the human visual system, Chen et al. [20] adopted the
feature of the statistical moments of wavelet characteristic
function in the HSV space to separate CG images from
NIs. Gallagher and Chen [21] detected traces of demosaicing
of original camera images to distinguish camera images
from computer graphics and reported a good forensic perfor-
mance. However, this method may be sensitive to post-
processing operations, such as resizing, which can remove
the demosaicing interpolation structure [22]. On the basis
of several previous studies, Sankar et al. [23] proposed a
set of combined features, including periodic-correlation-based
feature [24], color histogram feature [25], moment-based
statistical feature in the YCbCr color space [20], and local
patch statistics [18]. Zhang et al. [26] proposed a method
that analyzed the statistical property of local image edge
patches. First, a visual vocabulary on local image edges was
constructed with the aid of Voronoi cells. Second, a feature
vector was formed with a binned histogram of visual words.
Finally, an SVM classifier was trained for image classification.
Recently, Peng et al. [27] used a linear regression model to
extract the residual of a Gaussian low-pass-filtered image and
combined the histogram statistics and multi-fractal spectrum of
the residual image with the fitness of the regression model as
a feature to discriminate between NIs and CG images. Several
other methods that borrow features from steganalysis have
been proposed [28]–[30]. In this study, we consider a recent
and state-of-the-art steganalytic feature called subtractive pixel
adjacency matrix (SPAM) [31] to classify NIs and CG images.

All of the methods above manually design discrimina-
tive features in either the spatial domain or a transformed
domain. By contrast, our method automatically learns discrim-
inative information from the data. For algorithm valida-
tion, many existing methods construct their own datasets,
which often include images acquired by one or two digital
cameras with a similar resolution and visual quality. This
forensic scenario is somehow less challenging than the diffi-
cult setting of the Columbia dataset, i.e., Google versus
PRCG, which comprises NIs and CG images of heteroge-
neous origins. We mainly consider this challenging setting but
also present results for simple datasets. Robustness against
post-processing on NIs and CG images is another important
factor for forensic methods to be useful in real-world appli-
cations. Among previous studies, Zhang et al. [26] studied
the impact of JPEG compression post-processing and found

that this process leads to the loss of image edge informa-
tion. In Section V-D, we present a series of experiments
performed for robustness evaluation against typical post-
processing operations and provide the comparison results with
existing methods (including [26]).

B. CNN for Computer Vision and Multimedia Security

LeCun et al. [32] accomplished groundbreaking work of
using CNN aided by the back propagation algorithm [33]
to identify handwritten postal codes, and they obtained high
accuracy. With the improvement in machine performance,
especially graphics processing units, Krizhevsky et al. [4]
introduced a complex and deep CNN architecture, i.e.,
AlexNet, and won the ImageNet Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC2012). Jia et al. [34] slightly
adjusted the training sets and network architecture of AlexNet,
and provided a pre-trained CNN (CaffeNet) based on
Caffe [35] as the reference model. A popular technique based
on transfer learning [36], i.e., fine-tuning, has further increased
the power of deep models [37], [38]. Fine-tuning is an efficient
solution to reuse the weights of specific layers of a pre-trained
base network and carry out training on a new task.

In the multimedia security community, a number of
approaches use CNN for steganalysis [6]–[8], [39] and
image forensics [2], [3], [40]–[42]. Qian et al. [6] proposed
a deep model based on CNN for steganalysis and reported
encouraging results. Later, Pibre et al. [7] studied the
“shape” of CNN and identified the best CNN model after
numerous experiments. Their CNN obtained a significant
performance improvement over previous steganalytic methods
in the specific setting of reused secret key for information
embedding. However, the performance of their model in the
realistic setting of using a random secret key for each embed-
ding was weaker than that of conventional methods based on
hand-crafted features. Chen et al. [39] proposed a CNN-based
deep model for steganalysis of JPEG-domain steganography
that is different from the spatial-domain steganalysis [8].
They introduced the concept of JPEG-phase awareness into
the CNN architecture. For source camera identification,
Tuama et al. [40] combined a high-pass filter with CNN to
automatically and simultaneously extract features and learn
to classify. Recently, Bondi et al. [41] utilized CNN to
extract characteristic camera model features in an automated
manner and trained an SVM for classification. This method
outperforms previous methods in small color image patches,
and its features have a good generalization capability. Using
these deep features, Bondi et al. [42] introduced an itera-
tive clustering algorithm to efficiently solve image tampering
detection and localization.

In many previous CNN-based methods for multimedia secu-
rity [2], [3], [6], [8], including recent methods [43], [44],
a rather ad-hoc layer (fixed or constrained) exists in the
beginning of the deep model. This layer is often composed of
one or several high-pass filters and is fixed and thus not train-
able during the training process. For example, Qian et al. [6]
and Xu et al. [8] used a high-pass filter to extract the noise
residual of an input image at the bottom of their network.
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Similarly, Chen et al.’s CNN [2] also had a first fixed filter
layer that accepts an image as the input and outputs its median
filtering residual. This essentially performs nonlinear high-
pass filtering. Inspired by such empirical technical choices,
Bayar and Stamm [3] introduced a constrained filter layer for
universal image manipulation detection, that is, for this layer,
the center of filter kernel is −1, and the sum of remaining
elements is +1. They forced this first layer to learn a set
of high-pass, prediction error filters with such a constraint.
The core idea of this constrained filter layer is to extract
manipulation traces (assumed to be of high frequency) while
suppressing the semantic content (assumed mainly to be of
low frequency) of the input image.

In our work, we use a 3D filter group in the first layer
instead of 2D linear convolutional kernels because our input
is RGB images. The 3D convolutional filters are train-
able without any constraint and are thus flexible. We show
through experiments and visualization that these filters can,
to some extent, automatically extract useful and discrim-
inative features from available data for our classification
task.

During the revision stage of this paper, we become aware
of a recent parallel work for distinguishing CG images from
NIs that also uses CNN [45]; hereafter, we refer to it as
StatsNet. In Section V-H, we provide detailed qualitative and
quantitative comparisons and show the advantages of our
method over StatsNet in terms of network design, architec-
ture, and experimental forensic performance, especially in the
challenging Columbia dataset [1].

III. DATASET

All our experiments are conducted on the Columbia Photo-
graphic Images and PRCG Dataset [1]. Our experiments
consider three sets of images from the Columbia dataset: (1)
800 PRCGs from 40 3D graphic websites (PRCG), (2) 800 NIs
from the authors’ personal collections (Personal), and (3)
800 photographic images from Google Image Search (Google).
We remove five images with incorrect labels from the Google
set after discussing via email with the first author of the
dataset and obtaining his approval. The final number of images
in the Google set is 795. Previous studies have included
several common dataset settings, such as Personal+Google
versus PRCG [18], [20], Personal versus PRCG [21], and
authors’ own datasets (mostly not publicly available) [19],
[27], [46], [47], which were sometimes combined with the
Columbia dataset. The NIs in the authors’ own datasets are
often acquired by a small number of digital cameras; this
is similar to the configuration of Columbia’s Personal set
and thus appears to be less challenging. To the best of our
knowledge, no previous method has been tested under the
challenging setting of Google versus PRCG. This setting is
difficult because NIs in Google and CG images in PRCG have
heterogeneous origins [21]. We focus on this most challenging
setting, i.e., Google versus PRCG, which comprises images
that we typically encounter in a real-world forensic scenario.
We also test our method on two other settings: Personal versus
PRCG and Personal+Google versus PRCG.

Fig. 2. Two different frameworks for the image forensic problem.

IV. PROPOSED FRAMEWORK

A. Motivation

Distinguishing between NIs and CG images can be regarded
as a binary classification problem. Given the set of training
data {(x1, y1), · · · , (x N , y N )} of N samples, where x stands
for the image and y corresponds to its label (0: CG image and
1: NI), our goal is to find a good mapping function φ : y =
φ(x) using the given training samples.

For this problem, the standard framework (bottom of Fig. 2)
is to find a mapping y = c( f (x)), where f is a well-
designed feature extractor and c stands for a classifier, such as
SVM, or in a larger sense, it can also stand for thresholding for
scalar features. This framework is a two-stage model, and its
core is the feature extractor. However, these features are often
time-consuming and tedious to design and not necessarily
the most adequate ones, especially for complex data with
heterogeneous origins. A generic “end-to-end” framework (top
of Fig. 2), such as CNN, may be a better option. Given a
testing image, a well-trained CNN can directly and accurately
predict its label. To this end, we need to introduce a suitable
CNN model for our framework. We consider three different
methodologies in our approach: (1) following the existing
network architecture and training it from scratch, (2) fine-
tuning an “off-the-shelf” network that has been pre-trained
on another dataset and/or for another task, and (3) designing
a new network and training it from scratch. Before providing
details on these methodologies, we present our general strategy
adopted when using CNN for classifying NIs and CG images.

B. Local-to-Global Strategy

In view of computational cost, diversity of image size, and
specific requirement of image forensics, we adopt the local-
to-global strategy of training in small patches and classifying
full-sized images using the simple majority voting rule. This
strategy is partly based on the concept of data augmentation,
which is a commonly used technology to expand training data,
especially for deep learning [4], [48]. Krizhevsky et al. [4]
randomly altered the intensities of the RGB channels of each
training image using principal component analysis. The moti-
vation behind this scheme is that object identification in digital
images should be invariant to changes in the pixel intensity
and color of the illumination. Simonyan and Zisserman [48]
resized each training image, with the length of its shorter edge
as an integer randomly sampled from the range of [256, 512]
for scale augmentation.
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For our classification problem, on the one hand, local
decisions, i.e., high accuracies in small image patches, are
important and generally desirable in many image forensic
applications. On the other hand, a small patch cropped from a
CG image is still CG, and this is also true for NI. Therefore,
we apply patch augmentation, that is, we crop a certain
number of image patches of a fixed size from each training
image to augment the training dataset and try to obtain an
accuracy as high as possible on patches.

This strategy is flexible for local and global forensic
decisions. The direct result of such a strategy is high clas-
sification accuracy on patches, and the strategy can thus
be used for the case of local decisions without any modi-
fication. For global decisions, merely conducting majority
voting of multiple local decisions can lead to good perfor-
mance, which is a natural result of the high accuracy on
patches. In practice, we randomly crop a fixed number of
patches from each training image using Maximal Poisson-
disk Sampling (MPS) [49] to construct the training set. Unlike
random sampling, cropping with MPS can completely cover
the entire image and thus retains the original information as
much as possible. In the testing phase, we crop a certain
number of patches from each testing image and take the
label (0: CG image and 1: NI) of patches with a higher
number as the prediction result of this image. As shown later,
this strategy can also enhance the performance of existing
approaches that are based on manually designed features.

C. Fine-Tuning

Fine-tuning, a technique based on the concept of transfer
learning, is pervasive in the field of deep learning.
Yosinski et al. [38] analyzed the transferability of neurons
in each layer of a deep CNN. For similar datasets, they
found that initializing the weights of almost any number
of layers from a well-trained network in an original dataset
can improve the generalization performance after fine-tuning
to the new dataset. Such transferability generally declines
as the dissimilarity between the source and target task/data
increases. However, fine-tuning pre-trained CNN models from
computer vision tasks has been omitted by the multimedia
security community. We are curious about and want to verify
the transferability of such pre-trained models when applied
to image forensic problems, although our available data and
classification task are somewhat different from those of the
pre-trained CNN model.

A well-known reference network for visual recognition
is CaffeNet [34], which is trained on 1.3 million images
with 1,000 categories. CaffeNet has eight layers (or group
of layers): two convolutional groups, each of which includes
one convolutional layer, one max-pooling layer and one local
response normalization layer; three cascaded convolutional
layers, followed by a max-pooling layer; and three fully-
connected (FC) layers. In CaffeNet, each convolutional layer
consists of linear multidimensional convolutional kernels and
rectified linear unit (ReLU) activation [50], [51]. We succes-
sively fine-tune the first N layers, where N = 1, 2, · · · , 7.
We always need to change the number of neurons in the
last output layer from 1,000 (for the 1,000 classes of

ImageNet [52]) to 2 (binary classification of NIs and CG
images). The detailed results are reported in Section V-B,
where we show that fine-tuning CaffeNet leads to satisfactory
results that are better than those of state-of-the-art methods.

Next, we decide to design and implement our own CNN
that can cope even better with the classification of NIs and
CG images. We present its architecture and energy function
in the next two subsections. The design of the new CNN
is motivated by the following observations and intuitions.
First, our task and the corresponding dataset are more or less
dissimilar to those of CaffeNet (in particular, no CG image is
used during the training of CaffeNet); therefore, transferability
might not be optimal. Second, CaffeNet is a relatively complex
CNN designed for advanced and complicated computer vision
tasks, but our task on hand is a less complicated two-class
classification problem. Thus, a less deep and less complex
network would suffice to solve our problem. Third, the fixed
architecture of CaffeNet prevents us from easily adapting the
network to accommodate different sizes of input patches.

D. Our Network – Architecture

The input of our network is an image patch, and the
output is a binary label. One image patch is abstracted step
by step through nonlinear mapping (i.e., linear convolution
and nonlinear activation) and down-sampling. A powerful
high-level reasoning is applied. The informative and highly
abstracted vector is converted into the probability vector of
the label. Fig. 3 illustrates the architecture of our network.
The entire network is made up of the so-called convFilter
layer, three convolutional groups, two FC layers and a softmax
layer. Before explaining each layer, we mention one detail
about the relationship between the patch and input sizes of
CNN. We actually follow the common way in the field of
computer vision [4], [53]. The patch size (240×240) is slightly
larger than the input size of the network (233 × 233) shown
in Fig. 3, which can increase the space of training samples and
is thus useful in suppressing potential over-fitting. During each
iteration of network training, every 233 × 233 training sample
is randomly cropped from a 240 × 240 patch. In the testing
stage, the network extracts five patches of 233 × 233 pixels
(the center and four corner patches) from a testing sample, flips
these patches in the left-right direction (i.e., horizontal reflec-
tion), and finally averages the predictions of total 10 patches
as the final result.

The convFilter layer consists of a few 3D convolutional
kernels (32 in our network). In multimedia security, such as
steganalysis, a common operation is applying a group of filters
on an input image/patch prior to the execution of the main
algorithm [31], [54]. The convFilter layer cannot be simply
regarded as “pre-processing” like fixed and manually designed
filters in previous steganalytic methods because our layer is
trainable without any constraint. In addition, these kernels are
not explicitly required to have high-pass properties, such as in
several previous methods that use CNN for steganalysis and
forensics [2], [3], [6]. Technically, the convFilter layer maps
an RGB image to several feature images filled in with real
value elements and co-adapts to the successive convolutional
group. In Section V-B, we analyze the classification accuracy



QUAN et al.: DISTINGUISHING BETWEEN NATURAL AND CG IMAGES USING CNNs 2777

Fig. 3. Architecture of our network. The network input is a 233 × 233 RGB image, which is represented by a green square for simplicity. A red square
stands for a convolutional kernel, and the numbers close to it denote the kernel size. For example, the first red square from the left is a 7 × 7 convolutional
kernel. The feature maps are represented by shaded cuboids. No padding exists in our network.

of our network with the convFilter layer and compare with
several different configurations related to this layer.

In our network, a convolutional group includes convolu-
tional (Conv), batch normalization (BN), ReLU activation and
max-pooing layers. The Conv layer conducts multidimensional
linear operations and produces multiple feature maps. BN [55]
explicitly forces the output of Conv to take on a unit Gaussian
distribution. This layer makes network training highly robust
to poor initialization. The ReLU activation layer introduces
nonlinearity into the network and thus enhances the mapping
capacity of the model. Its form is f (x) = max(0, x). Max-
pooling is a down-sampling operation, where the maximum
value within a local window is taken as the output. On the
one hand, this operation reduces the number of parameters to
learn by reducing the spatial size of representation and thus
decreases computational cost. On the other hand, this operation
provides basic translation invariance to internal representation.
In our network, all max-pooling layers have the same kernel
size of 3 × 3 and a stride of 2.

The two FC layers constitute an FC two-layer neural
network, where every single neuron connects to all neurons in
the previous layer. The network conducts high-level reasoning.
Many parameters of the network are located here. A simple
and effective regularization technique, i.e., Dropout [56],
is applied to each FC layer to prevent potential over-fitting.
In the training stage, each unit in the FC layers is kept active
with a probability (default value is 0.5), with the interpretation
of sampling the neural network and updating the weights of
such sub-networks on the basis of input data. No Dropout is
applied in the testing stage.

The softmax layer maps the high-level feature vector (output
of FC layers) to the probability vector of class labels. There-
fore, the dimension of its output is equal to the number of
classes, and the sum of its output is 1.

Our proposed network is flexible and can accommo-
date multiple input sizes. We do not change the depth
of the network and the number of kernels in each layer
during the adjustment of network architecture to maintain
the structural stability of our CNN. For a small input size,
a new network can be rapidly built by simply reducing
the kernel size and removing the striding of the first few
layers (further details in Section V-C). This minor adjustment
also ensures that experimentally the input flow can propagate
to the last FC layers with a sufficient amount of useful
information.

E. Our Network – Loss Function with Regularization

CNN models are usually trained by minimizing a well-
designed loss function with the aid of back propagation.
A loss function is often composed of a data loss term
and a regularization term. The data loss term evaluates the
compatibility between a prediction (e.g., the class scores in
a classification problem) and the ground-truth label, and the
regularization term on model weights is designed to prevent
the over-fitting of trained models. In our method, we use
multinomial (binomial in our case) logistic loss (also known
as cross-entropy loss) with softmax, that is

J (θ)(data) = − 1

N
[
∑

N
i=1

∑
K
j=1�{yi = j}log

eai
j

∑ K
j=1eai

j

],

(1)

where N is the number of training samples, K is the number of
categories, �{·} is the indicator function so that �{True} = 1

and �{False} = 0, e
ai

j

∑ K
j=1e

ai
j

is the softmax function (normal-

ized exponential function) that converts the network output
into the probability of the class label, ai = φ(xi , θ) is the 2D
output vector of the network parameterized by θ , and K = 2
in our case.

We select L1 regularization to be added to the loss function
to reduce the complexity of model and prevent over-fitting.
The total loss is

J (θ) = − 1

N
[
∑

N
i=1

∑
K
j=1�{yi = j}log

eai
j

∑ K
j=1eai

j

] + λ|θ |,

(2)

where regularization weight λ balances the data loss and
regularization terms.

We also attempt L2 regularization and find that L1 regular-
ization yields better results. A possible explanation is that in
this work, we consider a binary classification problem, which
is not highly complex. From a human cognition point of view,
solving such a problem may not require a large amount of
brain activity and area to learn and understand. Analogically,
our problem may just require a relatively simple model, that
is, a model with sparse parameters reflected by the selected
L1 regularization.
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TABLE I

IMPACT OF NUMBER OF EXTRACTED PATCHES (IN ROW) ON THE
NETWORK’S PERFORMANCE FOR TESTING PATCHES OF 240 × 240

PIXELS ON THE GOOGLE VS. PRCG DATASET

V. EXPERIMENTAL RESULTS

A. Experimental Setting and Implementation Details

As mentioned in Section III, we perform experimental
studies on the Columbia Photographic Images and PRCG
Dataset [1] mainly for the challenging setting of Google versus
PRCG. Before conducting all the experiments, we resize all
images using bicubic interpolation so that the shorter edge
of each resized image has 512 pixels. This operation can
reduce the impact of scale and thus ensure the consistency
of all image patches. For all three settings, namely, Google
versus PRCG, Personal versus PRCG and Personal+Google
versus PRCG, we use the ratio of 3:1 to randomly split each
dataset into training and testing sets. To follow the local-
to-global strategy and generate sufficient training data for
our CNN model, we randomly crop 200 patches from each
training image using MPS [49]. Similarly, the testing set is
obtained by cropping 30 patches from each testing image.
Every patch is pre-processed by subtracting the per-pixel mean
of all training patches. Stochastic gradient descent with a
minibatch of 128 patches is used to train CNN models. The
base learning rate is initialized to 1e-3 and is divided by
10 every 30K iterations. The training procedure stops after
90K iterations. The default value of regularization weight λ is
1e-4, except for patch sizes of 60 × 60 and 30 × 30, whose
regularization weights are 5e-5 and 1e-5, respectively. As the
patch size decreases, the number of parameters in the corre-
sponding CNN model decreases (additional details of networks
for different patch sizes are given in Section V-C). Thus,
using a small λ value for regularization is reasonable, and
experimentally, this leads to a slightly improved performance.

As described above, we extract 200 patches from each
training image. For the patch size of 240 × 240, we have
relatively high overlapping between patches. This does not
weaken the performance of our network. Table I shows the
median and standard deviation of the results of 7 runs for
different amounts of cropped patches (i.e., 100, 200 and
300). Compared with 100 patches, the classification accuracy
of 200 patches is increased by 0.48%, and the standard
deviation is reduced by 0.3342%. This result means that in this
case, doubling the training data can improve the performance
and stability of our network. However, when we increase the
number of cropped patches from 200 to 300, the network’s
performance remains nearly the same, but the computational
cost increases.

We compare our proposed method with four state-of-the-
art methods that are based on hand-crafted features, namely,
Spam [31], Geo [18], Mfra [27], and Vlie [26] (the fourth
method is mainly for robustness evaluation against JPEG

TABLE II

IMPACT OF DIFFERENT NUMBERS OF EXTRACTED PATCHES ON THE
CLASSIFICATION ACCURACY OF TESTING PATCHES OF 240 × 240

PIXELS AND FULL-SIZED TESTING IMAGES WITH VOTING FOR THE

BEST TWO STATE-OF-THE-ART METHODS, NAMELY, GEO [18]
AND SPAM [31]. EXPERIMENTS ARE CONDUCTED ON THE

GOOGLE VS. PRCG DATASET

post-processing). These four methods follow the conventional
two-stage pipeline of machine learning and use SVM as
the classifier. Considering the long training time and high
memory footprint of SVM, we randomly crop 10 patches from
each training image to construct the corresponding training
sets for the first three conventional methods [18], [27], [31]
and 15 patches for the Vlie method to compensate for the
100 images of each category that are used to compute the
visual vocabulary, similar to the original paper [26]. The
number of samples in these training sets ensures reasonable
training time and memory consumption and is also sufficient
for obtaining stable and near-optimal results for the four
methods. As shown in Table II, doubling the training samples
exerts a minor impact on classification performance, but the
memory footprint considerably increases. For Spam with a
high-dimensional feature vector, the memory consumption
becomes prohibitive even on a computer equipped with 32GB
of RAM. All these methods are evaluated on the same testing
set as our proposed method. For SVM training, we use the
popular and efficient LS-SVM implementation [57].

B. Fine-Tuning CaffeNet and Analysis of convFilter Layer

We have explored fine-tuning the CaffeNet for this forensic
problem, and corresponding experimental results are reported
in Table III, in which the accuracy is computed on all
testing image patches of 240 × 240 pixels in the setting of
Google versus PRCG. In addition to this selected accuracy,
we generally observe the same trend for other metrics, such
as the accuracy after voting on full-sized images. We also
train CaffeNet on the Google versus PRCG dataset from
scratch for comparison. All of the results of fine-tuning are
better than the result of the network trained from scratch (the
column of “C-S” in Table III), which is consistent with
the observation in [38]. Through fine-tuning, we can obtain
relatively good classification accuracies that are higher than
those of traditional methods based on hand-crafted features.
The detailed results of traditional methods can be found in
the second last column of Table VII, with the highest attained
accuracy being 80.65%, which is lower than any accuracy
obtained by fine-tuning (i.e., “C-1” to “C-7” in Table III).
A possible explanation is that having a large number of NIs
from ImageNet (to our knowledge, no CG image exists in
ImageNet) is beneficial for the network during its pre-training,
and this helps the network understand the “intrinsic” properties
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TABLE III

CLASSIFICATION ACCURACY OF FINE-TUNING DIFFERENT LAYERS OF
CAFFENET ON DATASET OF GOOGLE VS. PRCG. ACCURACY IS

COMPUTED ON ALL PATCHES OF 240×240 PIXELS IN THE TESTING

SET OF GOOGLE VS. PRCG. “C” STANDS FOR CAFFENET.
“C-S” MEANS TRAINING CAFFENET FORM SCRATCH ON

GOOGLE VS. PRCG. “C-N” MEANS FINE-TUNING THE

FIRST N LAYERS OF PRE-TRAINED CAFFENET [34]
WITH THE REMAINING LAYERS RETRAINED

USING RANDOM WEIGHT INITIALIZATION,
WHERE N = 1, 2, · · · , 7

TABLE IV

IMPACTS OF DIFFERENT CONFIGURATIONS RELATED TO CONVFILTER

LAYER ON THE CLASSIFICATION ACCURACY OF TESTING PATCHES OF

240 × 240 PIXELS ON THE GOOGLE VS. PRCG DATASET. ‘CF’ IS
THE ABBREVIATION OF CONVFILTER. WE SHOW THE MEDIAN

OF RESULTS OF 7 RUNS, EACH WITH RANDOM

INITIALIZATION OF CNN

of NIs, one of the two classes that we want to distinguish in
our work.

Our CNN copes better with this forensic problem. Here
we first analyze the performance of the convFilter layer of
our network. Table IV lists the classification accuracy of
four different configurations related to this convFilter layer:
(1) our proposed network shown in Fig. 3 with two cascaded
convolutional layers at the beginning of network; (2) removing
the convFilter layer from the proposed network; (3) inserting
an additional ReLU activation layer in our network after
the convFilter layer; and (4) adding the high-pass filtering
constraint from [3] to the convFilter layer in our network. Our
configuration provides the highest accuracy, which demon-
strates the utility of convFilter layer. The classification accu-
racy decreases when the convFilter layer is followed by ReLU
activation, which may be an evidence that the relationship of
“co-adaptation” between the convFilter layer and the succes-
sive convolutional group is weakened by ReLU activation to
some extent. Adding a constraint to the convFilter layer, such
as in Bayar and Stamm’s work [3], also leads to performance
degradation, which means that prior knowledge that is useful
for image manipulation detection in [3] is not well suited for
the task of NI and CG image classification.

C. Classification Performance on Patches of Different Sizes

In this subsection, we compare the classification accuracy of
the proposed method with that of state-of-the-art methods on
patches of different sizes. As mentioned earlier, our network
is slightly modified to accommodate different input sizes.
The difference of networks used for different patch sizes is
provided in Table V. Furthermore, the max-pooling of the
C1 of Net-3 has no stride (i.e., the stride is equal to 1).
The network adjustment is simple. For small patches, we only
reduce the kernel size and remove the stride to guarantee the
structural stability of our CNN with a fixed depth and ensure

TABLE V

DIFFERENCE OF NETWORKS USED FOR DIFFERENT PATCH SIZES.
“7 × 7(2)” MEANS THAT THE CONVOLUTIONAL KERNEL SIZE IS

7 × 7 WITH A STRIDE EQUAL TO 2, AND ALL OTHER

STRIDES ARE EQUAL TO 1

that the information flow can pass to the FC layers under an
appropriately abstracted form. For Net-2 and Net-3, we cut
the number of neurons of the FC layers in half to prevent
over-fitting. The correspondence between networks and patch
sizes is as follows: Net-1 for 240 × 240 and 180 × 180; Net-2
for 120 × 120 and 60 × 60; and Net-3 for 30 × 30. The
corresponding input sizes of the networks for the five patch
sizes are 233 × 233, 169 × 169, 107 × 107, 51 × 51, 27 × 27.

Fig. 4 shows a comparison of the classification accuracy
of our method and those of three hand-crafted-feature-based
methods (Spam [31], Geo [18] and Mfra [27]) under different
patch sizes. For each patch size and method, the experiment
is repeated seven times with different randomized initializa-
tion/parameterization to enhance the statistical significance
of the results. We show the median of the results obtained
by seven runs. Our method demonstrates the best perfor-
mance for all patch sizes, followed by Geo and Mfra as the
worst. As mentioned earlier, the classification performance of
conventional methods based on hand-crafted features mainly
depends on the discriminability of features. These features do
not appear to be discriminative in this complex and challenging
setting of Google versus PRCG. By contrast, our method auto-
matically learns, as much as possible, useful and task-specific
information from available data with the aid of the powerful
learning capacity of CNN. Such automatic learning and unified
“end-to-end” optimization for this classification task is a better
choice than previous two-stage solutions. The accuracies of
almost all methods decrease with decreasing patch size. This
condition is understandable because smaller patches intuitively
contain less information. Therefore, correctly classifying them
is difficult for computational forensic algorithms and even
human beings. The numerical results that correspond to the
median accuracies shown in Fig. 4 can be found in the group
of columns labeled “Original” in Table VI. The performance
improvement of our method compared with the second-best
method, Geo [18], varies between 2.48% and 4.50% depending
on the patch size.

D. Robustness Against Post-Processing

An effective image forensic algorithm should not only
correctly deal with original data, which is Columbia’s testing
data in our experiments, but should also have a good level
of robustness on post-processed data because post-processing
is likely to occur either as a routine operation or an
intentional attack. To evaluate robustness, we perform tests
against two typical post-processing operations of rescaling
and JPEG compression. For rescaling, we consider down-
scaling and up-scaling. Section V-A indicates that all images
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TABLE VI

CLASSIFICATION ACCURACIES (%) FOR DIFFERENT TESTING SETTINGS: ORIGINAL, SCALE300, SCALE1000, JPEG90, AND JPEG80. “-” MEANS THAT
IN THIS CASE, THE MFRA METHOD CANNOT SUCCESSFULLY EXTRACT FEATURES. FOR EACH TESTING SETTING, WE SHOW THE ACCURACIES

OF FOUR METHODS (IN GROUP OF FOUR COLUMNS) ON PATCHES OF FIVE DIFFERENT SIZES (IN ROW). FOR EVERY TESTING SETTING,
THE FIRST COLUMN (OUR METHOD) WITHIN THE GROUP OF FOUR COLUMNS ALWAYS HAS THE HIGHEST ACCURACY

Fig. 4. Comparison of our method with three state-of-the-art methods under
different patch sizes. The solid lines show the median of 7 runs, and the error
bars illustrate the maximum and minimum. The result of Mfra for 30 × 30
patches is not indicated because Mfra fails to extract features from such small
patches.

to be classified are resized in a pre-processing step before
they are fed into CNN so that the shorter edge of the
resized image has 512 pixels. Therefore, we test our trained
network on testing sets, including images with a shorter edge
rescaled to 300 pixels (simulation of post-processing) and
then resized back to 512 pixels by the pre-processing of
our method (“Scale300”) and images with a shorter edge
rescaled to 1000 pixels and then to 512 pixels (“Scale1000”).
We compare the results with the baseline setting (denoted by
“Original”). We use bicubic interpolation to rescale the image
while preserving its aspect ratio, and we intentionally choose
300 and 1000 pixels for rescaling to avoid the potential side
effect induced by the divisor and multiple of 512 (e.g., 256 and
1024). As for JPEG compression, in the first place we consider
two typical quality factors: 90 (“JPEG90”) and 80 (“JPEG80”).

For all methods, we select the trained model, which provides
the median classification accuracy of seven runs in the “Orig-
inal” setting, to perform this robustness test. All testing results
are reported in Table VI. Mfra fails to extract features from
30 × 30 patches because the patch is too small. For all
five testing settings and five patch sizes, the performance
of our method is stable and always better than that of the
three other methods. As an example, for Spam, the average
performance drop of “Scale300” on all patch sizes is 9.962%,
whereas the corresponding value of our method is only
0.686%. In Fig. 5, the solid lines show the classification

Fig. 5. Classification accuracies of the four methods on five different testing
sets. The patch size is 240 × 240. “-P” is the accuracy on patches, and “-V”
is the accuracy after voting on full-sized images.

accuracies of the four methods on five different testing sets for
240 × 240 patches. Our method has stronger robustness than
the other methods. The two post-processing operations slightly
change the correlation of pixels with their local neighborhoods,
and conventional methods, especially the Spam method, might
be sensitive to this subtle alteration of local statistical property.
By contrast, our method is almost insensitive to rescaling and
quite robust against JPEG compression. This robustness can
be attributed to the diversity of the challenging dataset and the
powerful learning capability of CNN.

In addition, we investigate the JPEG robustness of our
method, Geo [18], and Vlie [26] for a large range of quality
factors, that is, from 100 to 10 with a step of 10. The
corresponding results are shown in Fig. 6. Compared with
Geo and Vlie, our method always demonstrates the best
performance on patches and full-sized images under all consid-
ered factors. Although the results of Vlie remain relatively
stable, the accuracies on patches and full-sized images are the
lowest with or without (corresponding to the “Original” case
in Fig. 6) JPEG post-processing. When the quality factor is
very low (e.g., 20 and 10, although such factors are rarely used
in real-world applications), the performance of our method
drops more rapidly than that of Geo but remains the best
among the three methods.

E. From Local to Global Decision

The local-to-global strategy, an important component of our
framework, is highly flexible and produces local and global
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Fig. 6. Classification accuracies of our method, Geo [18], and Vlie [26] for
a large range of quality factors, i.e., from 100 to 10 with a step of 10. The
patch size is 240 × 240. “-P” is the accuracy on patches, and “-V” is the
accuracy after voting on full-sized images.

TABLE VII

EFFECT OF LOCAL-TO-GLOBAL STRATEGY ON THE CLASSIFICATION

ACCURACY (%) OF THE SIX METHODS. “OUR-DF” MEANS THAT THE
ACTIVATION OUTPUT OF FC5 IS EXTRACTED AS DEEP FEATURE

AND AN SVM CLASSIFIER IS TRAINED. THE SECOND COLUMN

CORRESPONDS TO THE CASE OF TRAINING ON THE FULL-
SIZED IMAGES, AND THE THIRD AND FOURTH COLUMNS

CORRESPOND TO THE TWO CASES OF TRAINING ON

THE LOCAL PATCHES (240 × 240) THEN TESTING

ON EITHER PATCHES OR FULL-SIZED IMAGES
WITH VOTING. THE FIRST CASE DOES

NOT APPLY TO “OUR” METHOD AND

“OUR-DF” METHOD

decisions. Such a strategy applies not only to our CNN-
based method, which is related to data augmentation, but
also to conventional methods based on hand-crafted features,
as shown later in this subsection.

The accuracies obtained by our method after voting
from patches of different sizes (ranging from 30 × 30 to
240 × 240 pixels) are as follows: 83.63%, 88.41%, 88.66%,
92.70%, and 93.20%. Accuracy after voting refers to the
accuracy on full-sized images where the predicted label of
each testing image is obtained via majority voting of the
predictions of 29 cropped patches (we ignore the last one of the
30 randomly cropped testing patches to avoid tie votes). The
voting result is improved when the patch size increases, but we
find a very minor performance improvement for patches larger
than 240 × 240, which lead to a more costly computation.
Therefore, we select the 240 × 240 patch to produce the
final voting result. In addition, the voting accuracy, that is,
the classification accuracy on full-sized images, of our method
is always higher than the corresponding values of existing
methods, as can be seen from the last column of Table VII.

In particular, a considerable performance improvement of
5.29% is observed for our method compared with the Geo
method, which is the best hand-crafted-feature-based method.

For an objective comparison with previous SVM-based
methods, we extract CNN deep features (i.e., the activation
output of FC5) and train an SVM classifier with the same
experimental setting of SVM-based methods (i.e., cropping
10 patches from each training image). The results on local
patches and full-sized images are reported in Table VII.
Compared with the Geo method (best among all hand-crafted-
feature-based methods), our deep-feature-based method (“Our-
DF” in Table VII) is improved by 3.97% and 4.79% on local
patches and full-sized images, respectively. This improved
performance indicates that our deep feature has better
discriminative power than traditional hand-crafted features. In
addition, our CNN-based method has slightly higher classifica-
tion accuracies than our deep-feature-based method (compare
the second and third rows of Table VII). This finding implies
that merging feature extraction and classifier training into a
unified “end-to-end” framework brings additional benefits and
supports our motivation (see Section IV-A) of developing a
CNN-based method.

We then evaluate and verify the robustness of the voting
accuracy against the post-processing operations, and the
obtained results are shown by dashed lines in Fig. 5. The
comparison of the four dashed lines indicates that our method
has a stable and consistently better performance than the three
state-of-the-art methods.

Next, we validate this local-to-global strategy on hand-
crafted-feature-based methods, and the results are shown
in Table VII. Each method has three cases: train on full-sized
images and test on full-sized images; train on local patches and
test on local patches; and train on local patches and test on
full-sized images using voting. These three cases correspond
to the last three columns of Table VII, respectively. The first
case does not apply to our methods. The accuracy of training
on local patches and testing on full-sized images with voting
is higher than that of directly training and testing on the full-
sized images for the four conventional methods, and this can
be observed by comparing the second and last columns of
Table VII. A possible reason behind this improvement is that
the local-to-global strategy increases the diversity of training
samples to some extent. In this work, we use the simple
majority rule to vote. This point can be further improved in
our future work.

F. Further Analysis and Failed Examples

In this subsection, we further analyze the results of our
method in terms of two additional measures, namely, the error
rate of CG patches misclassified as NI (denoted as CGmcNI)
and its counterpart (denoted as NImcCG). The corresponding
results are reported in Table VIII. With decreasing patch size,
these two measures increase for almost all testing settings,
which is consistent with the previous findings (Section V-C).
The two error rates are often balanced. However, the NImcCG
values of JPEG90 and JPEG80 are clearly higher than
CGmcNI (last four columns of Table VIII, particularly for
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TABLE VIII

STATISTICS ON MISCLASSIFICATION RATES (%) OF OUR METHOD FOR DIFFERENT TESTING SETTINGS: ORIGINAL, SCALE300, SCALE1000,
JPEG90, AND JPEG80. WE CONSIDER THE ERROR RATE OF CG PATCHES MISCLASSIFIED AS NI (CGMCNI) AND ITS COUNTERPART (NIMCCG).

FOR EACH TESTING SETTING, WE SHOW THESE TWO ERROR RATES (IN GROUP OF TWO COLUMNS)
ON PATCHES OF FIVE DIFFERENT SIZES (IN ROW)

Fig. 7. Failed examples: the top row corresponds to CG images misclassified
as NIs, and the bottom row corresponds to NIs misclassified as CG images.

small patches). A possible reason is that the details of natural
patches are partially removed by JPEG compression. Thus,
the NI patches, especially those of small sizes, become rela-
tively “simple” and appear computer generated.

Fig. 7 shows several failed examples of our method. The
light in the first image on the top row has good naturalness,
and the color transition and texture of the two other images are
rather plausible. Therefore, these CG images are misclassified
as NIs by our network. On the contrary, the first two natural
images on the bottom row have a certain degree of unnatural-
ness in light and color, and the last image has a dramatic color
transition (e.g., the ceiling and shadow). These clues lead to
the wrong classification.

G. Performance Evaluation on Other Datasets

Our method demonstrates good performance in the highly
challenging dataset of Google versus PRCG. We also conduct
tests of the proposed method on other datasets, namely,
Personal versus PRCG and Personal+Google versus PRCG and
compare our method’s performance with that of state-of-the-
art methods. Fig. 8 shows a comparison of patch classification
accuracies under the two settings. In these two settings, our
method still exhibits the best performance, especially for
Personal versus PRCG (Fig. 8(a)), where the classification
accuracy remains stable for patches larger than 60×60 pixels.
Table IX presents the classification accuracies on full-sized
testing images obtained after voting from 240 × 240 patches.
We observe an accuracy improvement of 1.50% and 4.02%

TABLE IX

COMPARISON OF CLASSIFICATION ACCURACY (%) ON FULL-SIZED

TESTING IMAGES, OBTAINED AFTER VOTING FROM 240 × 240
PATCHES, ON TWO OTHER DATASETS

when we compare the result of our method to that of the
second-best method (Spam and Geo, respectively) under the
setting of Personal versus PRCG and Personal+Google versus
PRCG, respectively. In addition, compared with the setting of
Google versus PRCG (the last column in Table VII), a notice-
able performance improvement for the setting of Personal
versus PRCG (the second row in Table IX) is observed for
our method and existing methods. Our explanation is that the
Personal set is simpler (i.e., acquired by a small number of
digital cameras) than the Google set. Thus, the classification
is less difficult, and the result is improved for all methods.

H. Comparison With StatsNet

During the revision stage of this paper, we become aware
of a very recent parallel work presented in December 2017 at
IEEE WIFS [45]. StatsNet, the CNN-based method proposed
in that parallel work, follows the usual three-step procedure:
filtering (i.e., two conventional convolutional layers each with
Conv and ReLU, different from our cascaded convolutional
layers), statistical feature extraction (i.e., mean, variance,
maximum, and minimum of filtered images), and classifica-
tion (i.e., multi-layer perceptron). Several apparent differences
exist between [45] and our work. First, we consider the highly
challenging setting of Google versus PRCG, whereas [45]
considered a relatively simple setting with homogeneous NIs
and CG images, which is reflected in the experimental results
presented below. Second, our network is deeper and has
particularly designed cascaded convolutional layers. Therefore,
it has a higher classification accuracy and is thus more suitable
for distinguishing between NIs and CG images, as shown later
in this subsection. Third, the method in [45] selects only the
green channel of images, whereas our method uses all three
channels. Lastly, we conduct a more comprehensive study of
using CNNs for the discrimination of NIs and CG images;
specifically, we consider the fine-tuning of CNN and attempt
to understand what our CNN has learned about the difference
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Fig. 8. Comparison of patch classification accuracy on two other datasets: (a) Personal vs. PRCG and (b) Personal+Google vs. PRCG. The results of Mfra
on 30 × 30 patches are not provided because of feature extraction failure on such small patches.

TABLE X

COMPARISON OF CLASSIFICATION ACCURACY (%) OF OUR METHOD WITH THAT OF STATSNET ON FOUR DATASETS: RAISE VS. LEVEL-DESIGN,
GOOGLE VS. PRCG, PERSONAL VS. PRCG, AND PERSONAL+GOOGLE VS. PRCG. “STATSNET” REFERS TO THE CASE WHERE THE NUMBER

OF TRAINING PATCHES IS ALMOST THE SAME AS (IN FACT SLIGHTLY LARGER THAN) 40,000 USED IN THE ORIGINAL PAPER [45], AND

“STATSNET2” REFERS TO THE CASE WHERE MORE TRAINING SAMPLES ARE USED WITH 200 PATCHES CROPPED FROM EACH

TRAINING IMAGE (THE SAME AS IN ‘OUR’ METHOD)

between NIs and CG images by using advanced visualization
tools (Section VI).

In the following, we experimentally compare the clas-
sification performance of our method with that of Stat-
sNet, not only on their dataset (Raise versus Level-Design
comprising 1,800 CG images from the Level-Design Refer-
ence Database [58] and 1,800 photographic images randomly
selected from RAISE dataset [59]) but also on all the three
datasets described in Section III. The results are reported
in Table X. For StatsNet, we use the authors’ shared imple-
mentation [60] and follow the default setting described in [45].
The patch size of StatsNet is 100×100, while we use patches
of 60 × 60 pixels for our method. This is a disadvanta-
geous setting for our method because small patches contain
less information. However, although the patch size of our
method is nearly a quarter of that of StatsNet, our network
performs consistently better on all the four datasets (Table X).
Furthermore, instead of using the default number of training
samples as described in [45], we increase the amount of
training data of StatsNet to match that of our method (i.e.,
cropping 200 patches from each training image), and this
network variant is denoted by StatsNet2. The last two rows
in Table X show that in general, no guaranteed performance
improvement from StatsNet to StatsNet2 is observed, although
a large amount of data is used for training. A possible
reason is that StatsNet is a three-layer network with a limited
number of parameters; thus, using more training data than
necessary would not improve its patch classification accuracy
considerably.

I. Summary

Existing methods based on hand-crafted features exhib-
ited rather limited performance, especially in the challenging
setting of Google versus PRCG, mainly due to the limited
discrimination capability of extracted features and the separate
feature extraction and classification stages without strong co-
adaptation between them. These shortcomings can be over-
come by using a data-driven and “end-to-end” CNN-based
solution. In addition, the performance of our network is
better than that of StatsNet, which implies that a deeper
architecture with cascaded convolutional layers probably has
a stronger learning capacity and can cope better with this
forensic problem.

VI. VISUALIZATION AND UNDERSTANDING

Our CNN-based method exhibits good performance in terms
of classification accuracy and robustness against typical post-
processing operations. This characteristic is attributed to a
well-designed and implemented CNN model. In this section,
we wish to understand knowledge that is hidden in the data and
cannot be reflected by the quantitative evaluation metrics used
in Section V. Specially, we analyze and understand what our
CNN method has learned about the difference between NIs and
CG images by using several advanced and appropriate visual-
ization tools that are relevant to CNNs. This point was omitted
in previous attempts of using CNNs for image steganalysis and
forensics.

We study the filters that CNN has learned at its first layer.
The first convolutional layer of CNN directly takes raw pixel
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Fig. 9. Visualization of the FFT of the first-layer filters in our method (a), our method with the constraint from [3] (b), and pre-trained CaffeNet [34] (c,d).
(c) corresponds to the first 96 kernels of the first layer in CaffeNet and (d) corresponds to the last 96 kernels. The filters are organized in groups of three (in
columns) corresponding to the three color channels B, G and R. Brighter pixels mean higher values.

data as an input and is thus more interpretable than other layers
in the remaining part of the network [61]. A common phenom-
enon exists in many CNNs well trained on natural images for
computer vision tasks: the kernels they learn in the first layer
are similar to Gabor filters and color blobs [38]. From the
signal processing perspective, the convolution kernels of the
first layer are linear filters. Therefore, a powerful analysis tool,
that is, fast Fourier transform (FFT), can be used to analyze the
properties of these kernels. Fig. 9 shows the FFT of the kernels
in the first layer of our CNN, our CNN with an additional high-
pass filtering constraint from [3], and CaffeNet pre-trained
on ImageNet. The filters are organized in groups of three (in
columns), which correspond to the three color channels B, G
and R. Many kernels in the first layer with the constraint of [3]
[Fig. 9(b)] have an apparent high-pass response, whereas the
convFilter kernels of our method [Fig. 9(a)] mainly capture
the band-pass frequency information. However, the high-pass
filtering constraint reduces the performance by approximately
3% (see results in Table IV). This performance drop is
evidence that the band-pass information in a certain range of
frequency may be more useful for identifying NIs from CG
images than that at high frequencies. Furthermore, the first
group of 96 filters of the first layer in CaffeNet shown
in Fig. 9(c) are highly consistent among the three color
channels, but this consistency slightly decreases in the last
group of 96 filters, as shown in Fig. 9(d). The former collects
orientated information, and the latter considers color to some
extent. By contrast, almost all the filters in our method show no
apparent consistency among the three channels, as illustrated
in Fig. 9(a), which implies that this identification task between

NIs and CG images is more color-sensitive than conventional
computer vision tasks.

To summarize, we obtain the following observations
concerning filters in the first layer. Image forensic tasks may
need a new set of appropriate filters aside from those tailored
for computer vision tasks, but not necessarily high-pass filters
as suggested in [3]. Different forensic tasks may require
different, adequate filters that can be learned with or without
constraint. An appropriate constraint may improve perfor-
mance as shown in [3], whereas an inappropriate constraint
may decrease the performance as shown in our paper. In the
latter case, “freely” learning these filters is a better solu-
tion. Further studies should examine the interesting research
problem of the design and training of CNN and its layers for
different forensic problems.

In the following, we continue our analysis of what our
CNN has learned and what inspiration we can obtain from the
well-trained model. Through two advanced visualization tools,
namely, layer-wise relevance propagation (LRP) toolbox [62]
and deep visualization toolbox [63], we analyze the trained
model from the data-centric and network-centric point of
view, respectively. The network-centric approach only requires
the trained network for its analysis, and the data-centric
approach additionally requires passing sample data through
that network.

LRP [64] is a technique for determining the degree of local
contribution in an individual input to the neural network’s
output. In practice, we can obtain information about which
pixels in the input image are relevant to the prediction
outcome of the CNN by using the LRP toolbox [62]. The
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Fig. 10. Heatmaps of four sample image patches. The top row corresponds to NIs, and the bottom row corresponds to CG images. Each group consists of
the input image patch (left) and its heatmap (right). The red color in heatmaps stands for a large value, blue for a small value, and black for an intermediate
value.

relevance scores assigned to the pixels can be visualized as
an image with the same size as the input image, which is
called a heatmap. Fig. 10 shows four sample image patches
and the corresponding heatmaps on our trained CNN model.
Here, the CNN model does not use batch normalization due
to the limitation of LRP toolbox. Fig. 10(a) and (c) are
NIs from Google while (b) and (d) are CG images from
PRCG. We observe several very red pixels (meaning high
contributions) in the heatmap of (b) corresponding to bright
parts on the forehead, shoulder, and arm in the CG image,
which implies that the prediction of CNN is relevant to the
unnaturalness of light. The same CNN regards the light in
(a) as rather natural, which contributes to the prediction (see
red pixels corresponding to the left collar and slightly red
pixels on the nose and chin). For (d), high relevance in the
bottom of car is observed because the transition of the shadow
is unnaturally sharp, but the color transition in (c) is smoother
and natural and thus contributes to the prediction. Hence,
our CNN model uses the naturalness degree of light and the
smoothness of color transition as important clues for NI and
CG image classification. This finding also provides insights
into possible directions for computer graphics algorithms to
further improve the photorealism of rendered images and
synthesized images [65].

With the help of the deep visualization toolbox [63],
we compute the preferred inputs in the image space for two
output units located immediately prior to the final softmax
layer, which are shown in Fig. 11. The preferred input refers to
the input image that causes the corresponding unit to have high
activation. Fig. 11(a) is filled by multiple color blobs, which
implies that CG images often contain large color primitives
and look relatively “simple”. By contrast, the recurrent appear-
ance of “light points” shown in Fig. 11(b) implies that natural
images have more variability and look rather “complex”. This
condition might be one of the main differences between NIs
and CG images. Our observation is completely in line with
the hypothesis and observation of Dang-Nguyen et al. [17],
who assumed that synthetic facial animations present a less

Fig. 11. Visualization of preferred inputs in image space for two output
units. The left corresponds to CG image, and the right corresponds to NI.

complex pattern, whereas natural ones have a much more
complicated variability. Our observations of static NIs and CG
images are similar to those of [17] that examined the difference
between natural and CG facial videos. This similarity may
imply that CNNs can, to some extent, unconsciously follow a
similar idea of the hard intelligent work of researchers when
facing similar problems. In the future, we plan to design CNNs
for the discrimination of natural and CG videos, and we expect
to gain similar understanding and observation as those reported
in [17].

VII. CONCLUDING REMARKS

In this work, we proposed a generic framework based
on the convolutional neural network to identify and under-
stand the difference between natural and computer-generated
images. The performance of our network is better than that
of conventional methods and a very recent parallel CNN-
based method not only in the highly challenging Google versus
PRCG dataset, but also in relatively simple datasets. Our
method also outperforms state-of-the-art methods in terms of
performance in small image patches and robustness against
typical post-processing operations. These factors are important
for a forensic method to be useful in real-world applications.
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We attempted to conduct an extensive study on using CNN
for distinguishing between NIs and CG images. We considered
the fine-tuning, structure, energy function design, flexibility,
visualization, and understanding of CNN. To our knowledge,
fine-tuning of pre-trained CNN from computer vision tasks
and the visualization and understanding of what a CNN has
learned are new in image forensics and might be useful and
inspiring for other multimedia security tasks. Our source code
is available at https://github.com/weizequan/NIvsCG.

In the future, we would like to continue our work on using
CNNs for image forensics. First, we will try to improve the
performance of our method by using for instance an ensemble
of CNNs. It would also be interesting to introduce high-level
semantic information to assist in the classification task of
NIs and CG images, evaluate and improve (if necessary) the
forensic performance against highly malicious attacks (e.g.,
identifying recaptured NIs and CG images), and extend our
method to the classification of natural and CG videos. Further-
more, an exciting research problem is the architectural design
and efficient training of CNNs, which are particularly tailored
for either universal or targeted image forensics.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
helpful comments and suggestions. They would like to thank
Dr. T.-T. Ng for the Columbia dataset, shared code of [18] and
discussions about Google set, Dr. T. Pevny and Dr. F. Peng for
kindly sharing the source code of their algorithms respectively
described in [31] and [27], Dr. J.A.K. Suykens for making
the LS-SVM toolbox [57] publicly available, N. Rahmouni
for the dataset, shared code of [45] and advices for the usage
of code, and Dr. S. Lapuschkin for detailed and helpful
discussions about the LRP toolbox [64].

REFERENCES

[1] T.-T. Ng, S.-F. Chang, J. Hsu, and M. Pepeljugoski, “Columbia photo-
graphic images and photorealistic computer graphics dataset,” Columbia
Univ., New York, NY, USA, Tech. Rep. #205-2004-5, 2004.

[2] J. Chen, X. Kang, Y. Liu, and Z. J. Wang, “Median filtering forensics
based on convolutional neural networks,” IEEE Signal Process. Lett.,
vol. 22, no. 11, pp. 1849–1853, Nov. 2015.

[3] B. Bayar and M. C. Stamm, “A deep learning approach to universal
image manipulation detection using a new convolutional layer,” in Proc.
ACM Workshop Inf. Hiding Multimedia Secur., 2016, pp. 5–10.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 580–587.

[6] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for steganalysis
via convolutional neural networks,” Proc. SPIE, vol. 9409, p. 94090J,
Mar. 2015.

[7] L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont, “Deep learning is
a good steganalysis tool when embedding key is reused for different
images, even if there is a cover source-mismatch,” in Proc. IS T Electron.
Imag., 2016, pp. 1–23.

[8] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural design of convolutional
neural networks for steganalysis,” IEEE Signal Process. Lett., vol. 23,
no. 5, pp. 708–712, May 2016.

[9] H. Farid and M. J. Bravo, “Photorealistic rendering: How realistic is it?”
J. Vis., vol. 7, no. 9, p. 766, 2007.

[10] H. Farid and M. J. Bravo, “Perceptual discrimination of computer
generated and photographic faces,” Digit. Invest., vol. 8, nos. 3–4,
pp. 226–235, 2012.

[11] S. Fan, T.-T. Ng, J. S. Herberg, B. L. Koenig, and S. Xin, “Real or Fake?:
Human judgments about photographs and computer-generated images of
faces,” in Proc. SIGGRAPH Asia Tech. Briefs, 2012, Art. no. 17.

[12] O. Holmes, M. S. Banks, and H. Farid, “Assessing and improving
the identification of computer-generated portraits,” ACM Trans. Appl.
Perception, vol. 13, no. 2, 2016, Art. no. 7.

[13] B. Mader, M. S. Banks, and H. Farid, “Identifying computer-generated
portraits: The importance of training and incentives,” Perception, vol. 46,
no. 9, pp. 1062–1076, 2017.

[14] D.-T. Dang-Nguyen, G. Boato, and F. G. B. De Natale, “Identify
computer generated characters by analysing facial expressions varia-
tion,” in Proc. IEEE Int. Workshop Inf. Forensics Secur., Dec. 2012,
pp. 252–257.

[15] V. Conotter, E. Bodnari, G. Boato, and H. Farid, “Physiologically-based
detection of computer generated faces in video,” in Proc. IEEE Int. Conf.
Image Process., Oct. 2014, pp. 248–252.

[16] D.-T. Dang-Nguyen, G. Boato, and F. G. B. De Natale, “Discrimination
between computer generated and natural human faces based on asym-
metry information,” in Proc. 20th Eur. Signal Process. Conf., Aug. 2012,
pp. 1234–1238.

[17] D.-T. Dang-Nguyen, G. Boato, and F. G. B. De Natale, “3D-model-
based video analysis for computer generated faces identification,” IEEE
Trans. Inf. Forensics Security, vol. 10, no. 8, pp. 1752–1763, Aug. 2015.

[18] T.-T. Ng, S.-F. Chang, J. Hsu, L. Xie, and M.-P. Tsui, “Physics-motivated
features for distinguishing photographic images and computer graphics,”
in Proc. 13th Annu. ACM Int. Conf. Multimedia, 2005, pp. 239–248.

[19] S. Lyu and H. Farid, “How realistic is photorealistic?” IEEE Trans.
Signal Process., vol. 53, no. 2, pp. 845–850, Feb. 2005.

[20] W. Chen, Y. Q. Shi, and G. Xuan, “Identifying computer graphics using
HSV color model and statistical moments of characteristic functions,”
in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2007, pp. 1123–1126.

[21] A. C. Gallagher and T. Chen, “Image authentication by detecting traces
of demosaicing,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2008, pp. 1–8.

[22] T.-T. Ng and S.-F. Chang, “Discrimination of computer synthesized
or recaptured images from real images,” in Digital Image Forensics,
H. T. Sencar and N. Memon, Eds. New York, NY, USA: Springer, 2013,
pp. 275–309.

[23] G. Sankar, V. Zhao, and Y.-H. Yang, “Feature based classification of
computer graphics and real images,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., Apr. 2009, pp. 1513–1516.

[24] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling,” IEEE Trans. Signal Process., vol. 53, no. 2,
pp. 758–767, Feb. 2005.

[25] T. I. Ianeva, A. P. de Vries, and H. Rohrig, “Detecting cartoons: A case
study in automatic video-genre classification,” in Proc. IEEE Int. Conf.
Multimedia Expo, vol. 1. Jul. 2003, pp. I-449–I-452.

[26] R. Zhang, R.-D. Wang, and T.-T. Ng, “Distinguishing photographic
images and photorealistic computer graphics using visual vocabulary on
local image edges,” in Proc. Int. Workshop Digit. Watermarking, 2012,
pp. 292–305.

[27] F. Peng, D.-L. Zhou, M. Long, and X.-M. Sun, “Discrimination of
natural images and computer generated graphics based on multi-fractal
and regression analysis,” AEU-Int. J. Electron. Commun., vol. 71,
pp. 72–81, Jan. 2017.

[28] A. Rocha and S. Goldenstein, “Is it fake or real?” in Proc. Brazilian
Symp. Comput. Graph. Image Process., 2006, pp. 1–2.

[29] P. Sutthiwan, X. Cai, Y. Q. Shi, and H. Zhang, “Computer graphics
classification based on Markov process model and boosting feature
selection technique,” in Proc. 16th IEEE Int. Conf. Image Process.,
Nov. 2009, pp. 2913–2916.

[30] P. Sutthiwan, J. Ye, and Y. Q. Shi, “An enhanced statistical approach
to identifying photorealistic images,” in Proc. Int. Workshop Digit.
Watermarking, 2009, pp. 323–335.

[31] T. Pevný, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel
adjacency matrix,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,
pp. 215–224, Jun. 2010.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
Oct. 1986.



QUAN et al.: DISTINGUISHING BETWEEN NATURAL AND CG IMAGES USING CNNs 2787

[34] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[35] Y. Jia. (2013). Caffe: An Open Source Convolutional Architecture for
Fast Feature Embedding. Accessed: Jan. 15, 2018. [Online]. Available:
http://caffe.berkeleyvision.org/

[36] Y. Bengio, “Deep learning of representations for unsupervised and
transfer learning,” in Proc. ICML Workshop Unsupervised Transf.
Learn., 2011, pp. 17–36.

[37] J. Donahue et al., “DeCAF: A deep convolutional activation feature
for generic visual recognition,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 1–9.

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 3320–3328.

[39] M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich, “JPEG-phase-
aware convolutional neural network for steganalysis of JPEG images,”
in Proc. ACM Workshop Inf. Hiding Multimedia Secur., 2017, pp. 75–84.

[40] A. Tuama, F. Comby, and M. Chaumont, “Camera model identification
with the use of deep convolutional neural networks,” in Proc. IEEE Int.
Workshop Inf. Forensics Secur., Dec. 2016, pp. 1–6.

[41] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and
S. Tubaro, “First steps toward camera model identification with convo-
lutional neural networks,” IEEE Signal Process. Lett., vol. 24, no. 3,
pp. 259–263, Mar. 2017.

[42] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro,
“Tampering detection and localization through clustering of camera-
based CNN features,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, Jul. 2017, pp. 1855–1864.

[43] B. Bayar and M. C. Stamm, “A generic approach towards image
manipulation parameter estimation using convolutional neural networks,”
in Proc. 5th ACM Workshop Inf. Hiding Multimedia Secur., 2017,
pp. 147–157.

[44] J. Yang, K. Liu, X. Kang, E. Wong, and Y. Shi, “Steganalysis based
on awareness of selection-channel and deep learning,” in Proc. Int.
Workshop Digit. Watermarking, 2017, pp. 263–272.

[45] N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen, “Distin-
guishing computer graphics from natural images using convolution
neural networks,” in Proc. IEEE Int. Workshop Inf. Forensics Secur.,
Dec. 2017, pp. 1–6.

[46] N. Khanna, G. T.-C. Chiu, J. P. Allebach, and E. J. Delp, “Forensic tech-
niques for classifying scanner, computer generated and digital camera
images,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Mar./Apr. 2008, pp. 1653–1656.

[47] Z. Li, J. Ye, and Y. Q. Shi, “Distinguishing computer graphics from
photographic images using local binary patterns,” in Proc. Int. Workshop
Digit. Forensics Watermarking, 2013, pp. 228–241.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2014, pp. 1–14.

[49] W. Quan, D.-M. Yan, J. Guo, W. Meng, and X. Zhang, “Maximal
poisson-disk sampling via sampling radius optimization,” in Proc.
SIGGRAPH ASIA Posters, 2016, Art. no. 22.

[50] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung, “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit,” Nature, vol. 405, no. 6789, pp. 947–951,
Jun. 2000.

[51] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 1–8.

[52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[54] J. Fridrich and J. Kodovský, “Rich models for steganalysis of digital
images,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868–882,
Jun. 2012.

[55] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn., 2015, pp. 1–9.

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[57] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least Squares Support Vector Machines. Singapore:
World Scientific, 2002.

[58] M. Piaskiewicz. (2017). Level-Disign Reference Database. Accessed:
Jan. 15, 2018. [Online]. Available: http://level-design.org/referencedb/

[59] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE:
A raw images dataset for digital image forensics,” in Proc. 6th ACM
Multimedia Syst. Conf., 2015, pp. 219–224.

[60] N. Rahmouni. (2017). CGvsPhoto. Accessed: Jan. 15, 2018. [Online].
Available: https://github.com/NicoRahm/CGvsPhoto/

[61] F.-F. Li, J. Johnson, and S. Yeung. (2017). Visualizing what convnets
learn. Stanford University. Accessed: Jan. 15, 2018. [Online]. Available:
http://cs231n.github.io/understanding-cnn/

[62] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, and W. Samek,
“The LRP toolbox for artificial neural networks,” J. Mach. Learn. Res.,
vol. 17, pp. 1–5, Jun. 2016.

[63] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” in Proc. ICML
Deep Learn. Workshop, 2015, pp. 1–12.

[64] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PLoS ONE, vol. 10, no. 7,
p. e0130140, 2015.

[65] C. Barnes and F.-L. Zhang, “A survey of the state-of-the-art in patch-
based synthesis,” Comput. Vis. Media, vol. 3, no. 1, pp. 3–20, Mar. 2017.

Weize Quan received the B.S. degree from the
Wuhan University of Technology in 2014. He
is currently pursuing the Ph.D. degree with the
National Laboratory of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences. His
research interests include geometry processing and
image forensics.

Kai Wang received the Ph.D. degree in computer
science from the University of Lyon, Lyon, France,
in 2009. Since 2011, he has been a full-time CNRS
Researcher with GIPSA-lab, Grenoble, France. His
current research interests include multimedia secu-
rity and surface analysis.

Dong-Ming Yan received the bachelor’s and
master’s degrees from Tsinghua University, in
2002 and 2005, respectively, and the Ph.D. degree
from Hong Kong University in 2010. He is currently
an Associate Professor with the National Labora-
tory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences. His research interests
include computer graphics, geometric processing,
and visualization.

Xiaopeng Zhang received the Ph.D. degree in
computer science from the Institute of Software,
Chinese Academy of Sciences (CAS) in 1999. He is
currently a Professor with the National Laboratory
of Pattern Recognition, Institute of Automation,
CAS. His main research interests include computer
graphics and image processing. He received the
National Scientific and Technological Progress Prize
(second class) in 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


