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Abstract With the recent tremendous advances of computer graphics rendering and image editing technologies, computer generated
fake images, which in general do not reflect what happens in the reality, can now easily deceive the inspection of human visual system. In
this work, we propose a convolutional neural network (CNN)-based model to distinguish computer-generated (CG) images from natural
images (NIs) with channel and pixel correlation. The key component of the proposed CNN architecture is a self-coding module that takes
the color images as input to extract the correlation between color channels explicitly. Unlike previous approaches that directly apply CNN
to solve this problem, we consider the generality of the network (or subnetwork), i.e., the newly introduced hybrid correlation module
can be directly combined with existing CNN models for enhancing the discrimination capacity of original networks. Experimental results
demonstrate that the proposed network outperforms state-of-the-art methods in terms of classification performance. We also show that the
newly introduced hybrid correlation module can improve the classification accuracy of different CNN architectures.
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1 Introduction

Natural images (NIs), captured by digital cameras, can

accurately and objectively record the real-world scenes and

are considered as an important carrier of visual informa-

tion. In our daily life, NIs are often used for the accurate

dissemination of news and the effective recording of evi-

dence. Because of the strong artistic and realistic expres-

sion, computer-generated (CG) images are also an important

carrier of visual information. With the advances in comput-

er graphics rendering techniques, it becomes much easier to

generate CG images with strong photorealism. It becomes

more and more difficult to distinguish CG images from NIs

by naked human eyes, as shown in Fig. 1. Although CG im-

ages sometimes can give good visual experience, they also

potentially bring security problems to news and justice.

Fig.1. Two pairs of images about landscape and architecture. (a) Computer
generated images. (b)Nature images. These images are from the SPL2018
dataset [1].

Consequently, distinguishing CG images from NIs has

become an important research problem in multimedia se-

curity and visual media processing community. To address
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this problem, a lot of efforts have been made using the s-

tandard machine learning framework [2–7], which usually

consists of two stages: manually designing discriminative

features and training the classifiers. These hand-crafted fea-

tures more or less depend on human prior knowledge and

sometimes can achieve limited performance, especially for

complex datasets. Considering the strong learning capacity

and unified “end-to-end” optimization of convolutional neu-

ral network (CNN), recent approaches proposed CNN-based

models [1, 8–12] to distinguish CG images from NIs, and

achieved better detection performance compared with clas-

sic approaches [2–7]. However, the generality of the CNNs,

or the module of a network, i.e., a module can be direct-

ly combined with existing CNN-based models and further

improve their performance, is rarely considered in previous

works.

In this paper, we propose a new “end-to-end” CNN ar-

chitecture to address this problem. We expose different char-

acteristics between NIs and CG images using the channel

and pixel correlation information. A self-coding module

is designed to deeply explore the correlation between three

color channels, and then several convolutional layers with-

out pooling operation are applied to better extract the corre-

lation between image pixels. The newly designed network

is called ScNet (Self-coding Network). The main contribu-

tions of our work include:

• We design a self-coding module at the beginning of

the CNN to explicitly extract correlation information

between image color channels and thus enhance the

discrimination capacity of the whole CNN model. Ex-

perimental results show that our proposed CNN mod-

el outperforms the state-of-the-art methods in terms of

classification performance.

• We combine the proposed self-coding module with

consecutive convolutional layers (without pooling op-

eration) to extract the low-level features of input im-

ages, and this subnetwork can be directly installed in

the beginning of other existing CNN models. Conse-

quently, the performance of these existing CNN mod-

els are further improved, which validates the general-

ity of our designed ScNet.

The rest of paper is organized as follows. Section 2 dis-

cusses relevant existing literature, including hand-crafted-

feature-based and deep-learning-based methods. Section 3

presents the motivation and details of our proposed net-

work. Section 4 validates our network design and compares

with state-of-the-art approaches. Section 5 explains the self-

coding module via advanced visualization techniques. Sec-

tion 6 draws the conclusions.

2 Related Work

Existing approaches for distinguishing CG images from

NIs mainly can be classified into two categories: hand-

crafted-feature-based approaches and deep-model-based ap-

proaches. The former usually involves designing hand-

crafted features (in either the spatial domain or a trans-

formed domain) and training the classifiers (e.g., support

vector machine (SVM)). The latter often follows a generic

“end-to-end” framework by using deep neural networks.

2.1 Methods Based on Hand-crafted Features

Several hand-crafted-feature-based approaches have

been proposed to distinguish CG images from NIs. Based

on the differences in the generation process of NIs and CG

images in target models, light transmission, and acquisi-

tion methods, Ng et al [2] proposed to identify CG im-

ages using features aided by fractal and differential geom-

etry. Lyu and Farid [3] proposed a feature by combining

first-order and higher-order wavelet statistics to distinguish

between photographic and photorealistic images. Chen et

al [4] designed the feature using the statistical moments of

wavelet characteristic function in the HSV color space. Gal-

lagher and Chen [5] captured the original decoding traces of
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photographic images to separate CG images from NIs and

achieved a good detection performance. Based on the pre-

vious studies, Sankar et al [6] proposed a combination of

features, including periodic correlation based features [13],

color histogram features [14], momentum-based statistical

features in YCbCr color space [4] and local patch statisti-

cal features [2]. From the image perception perspective, Pan

et al [15] proposed the discriminative features are derived

from fractal dimension and several generalized dimensions

to respectively capture the difference in color and the de-

tailed texture between CG images and NIs. Zhang et al [16]

proposed a method based on the statistical property of lo-

cal image edge patches. Li et al [17] explored a local tex-

ture descriptor, i.e., uniform gray-scale invariant local bi-

nary patterns (LBP) [18], to classify NIs and CG images.

Peng et al [7] extracted the residuals of images after Gaus-

sian low-pass filtering using the linear regression model, and

then combined histogram statistics and multi-fractal spec-

trum of the residuals with the fitness of regression model

as features to distinguish natural images from rendered im-

ages. Above approaches usually achieve a well performance

on the relatively simple datasets, but they are often exhibit

limited performance in complex and challenging datasets.

2.2 Methods Based on Deep Learning

More recently, considering the powerful learning capaci-

ty of deep neural networks [19–21], some deep-model-based

methods were proposed to solve this security problem. Rah-

mouni et al [8] developed a special pooling layer to extrac-

t the statistical quantities from the convoluted images, and

this can be optimized in an “end-to-end” CNN framework

to distinguish computer-generated graphics from real pho-

tographic images. Quan et al [10] proposed a method of

adding cascaded filtering layer on the top of CNN to im-

prove network performance. This network structure can be

simply adjusted to the input of different patch sizes, and

Maximal Poisson-disk Sampling (MPS) method [22] was

used to assist patch augmentation process. In addition, they

tried to provide insights into improving the photorealism

of rendered images and synthesized images [23] via under-

standing the learned deep model. Yao et al [11] proposed an

approach to separating CG images from NIs based on sen-

sor mode noise and deep learning. For the input images,

three high-pass filters (HPF) were used to remove the low-

frequency signal representing image content and eliminate

the interference of image content to the discrimination. He

et al [1] combined CNN and recursive neural network (RN-

N) to classify CG images and NIs. They used pre-processing

operations of color space transformation and Schmid filter-

ing to extract color and texture features. A dual-path CNN

was designed to combine the color and texture feature rep-

resentation of each patch and conduct global modeling of

local feature representation via the directed acyclic graph

RNN. Nguyen et al [12] extended the application of the cap-

sule network [24, 25] to identify the CG images. Recent-

ly, Bhalang Tarianga et al [26] proposed an attention-based

deep convolutional recurrent model to classify computer-

generated images and NIs.

To the best of our knowledge, there is no existing work

that considers the “generality” of the CNNs (or the module

of a network). Our first study in this direction can effective-

ly improve the classification performance of existing deep

models. In this work, we design a self-coding module based

on the channel correlation, and then combine consecutive

convolutional layers to construct a generality-well subnet-

work.

3 Proposed Method

In this section, we first explain the motivation of our

method and then illustrate the proposed network architec-

ture, which involves channel correlation module, pixel cor-

relation module, feature fusion, and final decision.
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Three parallel 
Hc Modules 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Hybrid correlation(Hc) Module 

Fig.2. Architecture of our network ScNet and the hybrid correlation module. The network input is a 96 × 96 image patch, and output is the label (NI or
CG). Each convolutional layer shows the kernel size and the number of feature maps, e.g., “3× 3 Conv 32” means the kernel size is 3× 3 and the number
of output channels is 32.

3.1 Motivation

During the process of producing photographic images,

the light collected by commercial digital cameras is filtered

by the Color Filter Array (CFA) before reaching the camera

sensor. Each pixel of the filtered Bayer image contains only

part of the spectrum [one primary color in red (R), green (G),

and blue (B)], which causes two-thirds of the color informa-

tion in the digital image to be lost. To obtain the complete

digital color image, the sensor successively interpolates the

known color in the neighborhood to estimate the missing

color information of each pixel. This step leaves the corre-

lation at the pixel and channel level. Because CG images

are generated by the rendering program instead of interpo-

lation, these two levels of correlation may be weak in CG

images. Therefore, pixel neighbor correlation and channel

correlation can be used as important evidence to distinguish

CG images from NIs.

Convolution operation can extract pixel correlation in

the window of the convolutional kernel. However, a fea-

ture map is obtained by the direct summation of multiple

convolutional channels (the process of convolution opera-

tion in the CNNs), which may destroy the correlation be-

tween image color channels to some extent. Image channel

correlation has attracted attention in the field of visual me-

dia security. For example, Yan et al [27] used differential

images, i.e., the differential between two color channels, to

aid the identification of recolored images. Although the dif-

ferential image is a representation of channel correlation, it

does not necessarily depict the optimal correlation. To fully

explore the correlation between R, G, and B channels, we

designed a module for the convolutional neural network to

automatically learn such channel correlation.

3.2 Network Architecture

In the following, we describe the structure, operation,

and mechanism of each module in proposed network.

3.2.1 Channel Correlation

As shown in the bottom of Fig. 2, we designed a self-

coding module with the 1 × 1 convolution of output chan-

nel 1 (the pink block) to explicitly learn channel correla-

tion of input image patches. This self-coding channel cor-
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relation module is called as Conv1 module. The coefficien-

t [w1, w2, w3] of 1 × 1 convolutional kernel represents the

weight of R, G, and B channel in this correlation. This con-

volution operation can be expressed as

Cij = w1 ×Rij + w2 ×Gij + w3 ×Bij ,

where Cij is the pixel-wise output of the Conv1 module.

When the coefficient is [1,−1, 0], [1, 0,−1], [0, 1,−1] or

other special cases, it can be regarded as learning the dif-

ferential image. Compared with the hard-coding operation

of the differential image, e.g., R-G in [27], the module de-

signed by us learns the weight of three channels and has

a larger parameter space to model channel correlation in a

more flexible manner. As reported in Section 4.2, the per-

formance of adding three Conv1 modules is better than that

of three hard-coding differential branches.

3.2.2 Pixel Correlation

After Conv1 module, the color channel correlation of

NIs and CG images is modeled. To extract the correlation

between neighboring pixels, we used three 3 × 3 convo-

lutions of output channel 8 without any pooling operation.

Each convolution can subtly extract the correlation of 9 pix-

els in the local neighbor patch, and the output of the convo-

lution is formulated as

Oij =
1∑

u=−1

1∑
v=−1

F (u, v) · Ik(i+ u, j + v),

where F stands for the 3 × 3 convolutional kernel and Ik

stands for the k-th channel of the input of the convolution-

al layer. There is no pooling operation for all three con-

volutional layers, so as to retain the original useful infor-

mation as much as possible. We call the combination of

Conv1 module and consecutive three convolutional layers

(red dotted block in Fig. 2) as the hybrid correlation module

(channel and pixel correlation), which is abbreviated as Hc

module hereafter.

3.2.3 Fusion and Decision

Considering the three color channels in RGB image, we

use three parallel Hc modules to learn the hybrid correlation

of input image simultaneously (the top-left corner in Fig. 2).

Note that, these three Hc modules are independent, and the

corresponding parameters are also not shared with each oth-

er. The three Hc modules can extract different hybrid corre-

lation information of the input image, and then we directly

concatenate the output feature maps of Hc modules. Next,

we use 6 convolutional layers with max-pooling to further

learn the hierarchical representation (Layer 1-6 in Fig. 2),

using the above concatenated feature maps as input. In ad-

dition, the number of output channels of each convolutional

layer remains the same or increases by a power of 2 from

32 to 256. All max-pooling layers have the same kernel size

of 3 × 3 and a stride of 2. We apply a global average pool-

ing (GAP) operation to transform the final feature maps into

a high-dimensional vector. Fully-connected (FC) layer and

softmax layer perform final decision on vectors and obtain

probabilities belonging to two classes (NI or CG).

4 Experimental Results

In this section, we validate the network design and the

generality of the proposed Hc module by comparing it with

existing corresponding counterparts. The proposed network

was also compared with other representative state-of-the-art

networks, i.e., LiNet [10], BSP-CNN [1], YaoNet [11], and

very recent attention-based model [26]. Finally, the com-

pression robustness and generalization of these networks

were evaluated.

4.1 Experimental Setup

In this work, we use the SPL2018 dataset contributed by

He et al [1], which contains 6,800 NIs and 6,800 CG images.

The advantage of this dataset is that CG images are obtained

by more than 50 pieces of rendering software, while NIs are
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obtained in different environments using different models of

cameras. This is close to the real-world application. Fol-

lowing [1], the 192 × 192 central region of each image is

cropped. Then, these cropped image patches are randomly

divided into training, validation, and testing sets (with the

ratio 10:3:4).

In view of computational cost and the fair comparison,

all networks have the same input size of 96 × 96. In the

training stage, we use a batch size of 64, including 32 NIs

and 32 CG images. We randomly crop 96 × 96 patch from

192 × 192 image to augment training set, and shuffle the

order of training set after each epoch. Stochastic Gradient

Descent (SGD) [28] is used to optimize the parameters of

CNN models. The initial learning rate is set as 0.001 and

Fig.3. The training loss of the ScNet and three corresponding variants.

divided by 10 every 400 epochs. The training process stops

after 1,200 epochs, and all test results are reported at 1,200

epochs. For SGD optimizer, we employ a weight decay of

0.0001 and a momentum of 0.9. In the testing stage, we fol-

low the ten-crop average: for each test image (192 × 192),

we crop five patches of 96 × 96 pixels (the center and four

corner patches), flip these patches horizontally, and finally

average the predictions of total 10 patches as the final re-

sult. All experiments are implemented with PyTorch 0.4.1.

We train the network for 1,200 epochs, which takes about

105 minutes on a GeForce® GTX 1080Ti. In addition, all

reported results are the average of three random splits.

4.2 Validation of Network Architecture Design

We evaluate our network by comparing classification

accuracies of ScNet and three corresponding variants, i.e.,

ScNet-3Pc, ScNet-3Di, and ScNet-Base. 3Pc stands for the

variant of three parallel Hc modules removing Conv1 mod-

ule (“1 × 1 Conv 1” in Fig. 2). 3Di stands for the vari-

ant of three parallel Hc modules replacing Conv1 module

with three hard-coding differential images (R-G, R-B, and

G-B) [27] respectively. Base stands for the architecture s-

tarting from “Layer 1” in Fig. 2. We record the training loss

Fig.4. The accuracy rate of the ScNet and three corresponding variants on
the validation set.

of above four networks for one random split and the corre-

sponding curve is plotted in Fig. 3. The training loss quickly

decreases in the first 600 epochs and the network reaches the

stability after about 1,000 epochs. Fig. 4 shows the classi-

fication accuracies of these four networks on the validation

set. Among four networks, ScNet achieves the best perfor-

mance.

Table 1 reports the classification accuracies of ScNet,

ScNet-3Pc, ScNet-3Di, and ScNet-Base on the testing set.
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As shown in the last column of Table 1, ScNet is stably

superior to the other three variants, such as ScNet-3Di and

ScNet-Base by 2.01% and 1.72%, respectively. Compared

with ScNet-3Pc, the average classification accuracy of Sc-

Net is improved by 0.46%. This improvement indicates that

our Conv1 module can effectively capture the correlation be-

tween image color channels, and the channel correlation in-

formation is useful for the classification of NIs and CG im-

ages. In addition, we find that our self-coding strategy for

exploring the correlation information between color chan-

nels is more flexible and effective than the hard-coding s-

trategy (see the rows of “ScNet” and “ScNet-3Di” in Table

1). In fact, the former follows the philosophy of deep learn-

ing, whereas the latter follows that of feature engineering.

Table 1. Classification accuracies of ScNet and three corresponding vari-
ants. “First”, “Second”, and “Third” respectively corresponds to one ran-
dom split. “AVG” is the average value of these three random splits. For
clarity, the highest accuracy is in bold, and this is same for the remaining
tables.

Architecture First Second Third AVG
ScNet 94.72% 93.69% 94.13% 94.18%
ScNet-3Pc 94.31% 93.34% 93.51% 93.72%
ScNet-3Di 92.28% 92.22% 92.00% 92.17%
ScNet-Base 93.34% 91.88% 92.16% 92.46%

4.3 Validation of Module Generality

From Table 1, we show that the Hc module achieves the

improvement by 1.72% when comparing “AVG” of “ScNet”

and “ScNet-Base”. In the following, we evaluate the gen-

erality of this Hc module, i.e., the impact of combining Hc

module with existing CNN models. In this work, we con-

sider three recent CNN models: LiNet [10], BSP-CNN [1],

and YaoNet [11]. The corresponding results are reported in

Table 2. The two variants of 3Hc mentioned in Section 4.2,

i.e., 3Pc and 3Di, are also tested. In addition, “Base” in

Table 2 stands for the original network designed by its au-

thors, and the meaning of symbol “Base” is different from

that mentioned in Section 4.2.

Comparing the rows of “3Hc” and “Base” in Table 2,

we find that the classification accuracy of 3Hc (the archi-

tecture of three parallel Hc modules shown in Fig. 2) for

three networks is higher than that of Base by 1.55%, 1.55%,

and 4.62%, respectively. This indicates that 3Hc module

can further improve the classification performance of exist-

ing networks through directly adding this hybrid correlation

module at the beginning of existing networks. It is worth

noting that the accuracy of 3Pc for all three networks is low-

er than that of 3Hc, which implies that Conv1 module also

has good generality, i.e., explicitly extract the channel corre-

lation information to enhance the discrimination capacity of

networks. In addition, the accuracy of 3Di of LiNet is lower

than that of LiNet by 0.36%, whereas this drop does not ex-

ist for BSP-CNN and YaoNet (comparing the rows of “3Di”

and “Base” in Table 2) . This implies that the differential

images (even similar hard-coding strategy) may be difficult

Table 2. Generality evaluation of Hc module in three recent CNN mod-
els (LiNet [10], BSP-CNN [1], and YaoNet [11]). “Base” stands for the
original network proposed by its authors.

LiNet BSP-CNN YaoNet
3Hc 93.93% 93.34% 93.69%
3Pc 93.57% 93.14% 93.28%
3Di 92.02% 91.99% 91.70%
Base 92.38% 91.79% 89.07%

to guarantee their generality, i.e., consistently and stably im-

proving the performance of existing CNN models.

4.4 Comparison with State of the Art

We first compare the designed ScNet with state-of-the-

art approaches. By comparing the “AVG” of “ScNet-Base”

in Table 1 with the row of “Base” in Table 2, we find that

the average classification accuracy of ScNet-Base (starting

from “Layer 1” in Fig. 2) is higher than that of LiNet [10],

BSP-CNN [1], and YaoNet [11], respectively. This suggests

that the Base structure of ScNet can extract the correlation

between patch pixels better than other networks. Compared

with three recent networks adding modules of 3Hc, 3Pc, and

3Di, ScNet, ScNet-3Pc, and ScNet-3Di still show the best
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Table 3. Classification accuracies of ScNet-Base, ScNet and model in [26] on RAISE vs. PRCG for four different patch sizes.

Patch Size ScNet-Base ScNet Bhalang T. et al [26]
Patch Voting Patch Voting Patch Voting

240× 240 99.40% 100% 99.94% 100% 97.40% 97.20%
120× 120 99.27% 100% 99.73% 100% 96.90% 97.69%
60× 60 98.64% 100% 99.63% 100% 94.90% 94.55%
30× 30 97.57% 100% 99.21% 100% 90.90% 92.67%

performance. For example, for 3Hc module, the average

classification accuracy of ScNet (the “AVG” of “ScNet” in

Table 1) is higher than that of LiNet, BSP-CNN, and YaoNet

(the row of “3Hc” in Table 2) by 0.25%, 0.84%, and 0.49%,

respectively. It indicates that ScNet is superior than the oth-

er three networks. Furthermore, the accuracy of ScNet is

0.31% higher than the best discrimination result of 93.87%

in SPL2018 dataset reported by [1], which indicates that the

network designed by us has superior discrimination perfor-

mance. Note that, our ScNet is more simple than the net-

work used in [1] where they combined the dual-path CNN

with hand-crafted preprocessing operations and the DAG-

RNN.

We also compare ScNet-Base and ScNet with the lat-

est attention-based deep convolutional recurrent model [26].

The following experiments are conducted on the RAISE

[29] versus PRCG [30], and the experiment setup are the

same as those described in [26]. The corresponding result-

s are reported in Table 3. The average classification accu-

racies for both patch and voting of ScNet-Base and ScNet

are always higher than that of network proposed in [26]. In

addition, the patch accuracy of ScNet (i.e., with 3Hc mod-

ule) is higher than that of ScNet-Base for all patch sizes (see

the column “Patch” of “ScNet” and “ScNet-Base” in Table

3). This is also consistent with previous analysis that our

proposed Hc module can further improve the classification

performance.

4.5 Robustness against Post-Processing

The robustness of detection models against post-

processing is important because the using of post-processing

operation can weaken the statistical characteristics of CG

images and NIs, so as to deceive the detectors. Here, we

mainly examine the impact of JPEG compression on the i-

dentification of CG images, with compression factors from

95 to 35 with a step of 10. In the testing set, both natural

samples and computer-generated samples are compressed.

There is no obvious visual difference between the com-

pressed and uncompressed images. All the following exper-

iments use the trained models in Section 4.2 and Section 4.3,

and there is no additional training for compressed images.

Table 4 shows the statistics of the robustness test of the

3Hc structure and Base structure in the four networks (Sc-

Net, LiNet, BSP-CNN, and YaoNet) to JPEG compression

with seven different quality factors. For each of the seven

quality factors (each row shown in Table 4), it is always Sc-

Net, with 3Hc module, that has the highest accuracy expect

for two cases (87.18% for LiNet-3Hc, and 87.12% for BSP-

CNN-3Hc in row of “85”). Note that, the corresponding

accuracy for ScNet-3Hc is 87.07%, and it is very close to

the above two values. In addition, the accuracy of network

with 3Hc is better than that of network without 3Hc. Take

the ScNet as an example, the values in column of “3Hc” is

higher than that in column of “Base”. When images under

the strong compression (quality factor starting from 75 to

35), the declining speed of accuracy of network with 3Hc

is slower than that of the network without 3Hc. For exam-

ple, the gap is 2.70% for BSP-CNN-3Hc (from 80.66% to

77.96%), while 5.33% for BSP-CNN-Base (from 81.83% to

76.50%). This observation further confirms that our pro-

posed 3Hc module can enhance the robustness of original
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Table 4. Performance evaluation of four networks with/without 3Hc module on the JPEG compressed testing set. “-” means results on the original testing
set. Note that all models are trained on original training set.

Quality Factor ScNet LiNet BSP-CNN YaoNet
3Hc Base 3Hc Base 3Hc Base 3Hc Base

- 94.18% 92.46% 93.93% 92.38% 93.34% 91.79% 93.69% 89.07%
95 93.26% 91.43% 92.43% 91.74% 92.06% 91.11% 91.70% 87.59%
85 87.07% 86.73% 87.18% 86.62% 87.12% 86.67% 86.48% 82.20%
75 82.36% 82.25% 81.97% 79.83% 80.66% 81.83% 82.01% 79.96%
65 81.94% 78.62% 77.92% 75.50% 80.35% 78.53% 80.53% 77.24%
55 80.08% 76.83% 76.67% 72.97% 78.47% 76.64% 77.79% 74.75%
45 79.95% 76.43% 76.75% 71.85% 78.39% 76.13% 77.54% 73.44%
35 79.44% 76.39% 76.39% 71.82% 77.96% 76.50% 77.81% 72.27%

Table 5. Generalization performance evaluation of four networks with/without 3Hc module on the Google vs. PRCG. “First”, “Second”, and “Third” shows
the classification accuracies of networks trained on SPL2018 dataset with one random split, respectively. “AVG” is the average value of these three random
splits.

Architecture ScNet LiNet BSP-CNN YaoNet
3Hc Base 3Hc Base 3Hc Base 3Hc Base

First 82.81% 79.38% 78.31% 76.94% 82.19% 77.75% 74.50% 74.62%
Second 82.44% 77.88% 76.31% 76.50% 81.13% 76.69% 73.75% 72.69%
Third 81.69% 79.25% 78.06% 76.38% 81.00% 77.13% 74.50% 74.06%
AVG 82.31% 78.83% 77.56% 76.61% 81.44% 77.19% 74.25% 73.79%

networks for JPEG compression.

4.6 Generalization Evaluation

To apply a CNN-based detector to the real-world sce-

nario, the generalization performance, i.e., testing on “un-

seen” dataset, is an important factor. We evaluate the gener-

alization capability of proposed method on the highly chal-

lenging dataset of Google versus PRCG [2], which compris-

es NIs and CG images of heterogeneous origins and is thus

close to the real-world application. All the following experi-

ments use the trained models in Section 4.2 and Section 4.3,

and these models use the training dataset of SPL2018 [1].

Table 5 reports the classification accuracies of the 3Hc

structure and Base structure in the four networks (ScNet,

LiNet, BSP-CNN, and YaoNet) on Google versus PRCG

dataset. Comparing the column of “Base” of all four net-

works, we find that ScNet has the highest accuracy. Note

that, for LiNet, BSP-CNN and YaoNet, “Base” refers to

the network architecture reported in their papers [1, 10, 11],

therefore, this illustrates that the Base structure of ScNet

(starting from “Layer 1” in Fig. 2) has better generaliza-

tion performance. When comparing the average accuracies

between “Base” and “3Hc” for four networks (the row of

“AVG” in Table 5), the accuracy increases by 3.48%, 0.95%,

4.25%, and 0.46%, respectively. This improvement shows

that adding the 3Hc module can enhance the network gener-

alization capability. Furthermore, the classification accura-

cy of ScNet-3Hc is the highest among all of validation net-

works, and this means that our proposed network holds the

superior generalization capability.

5 Visualization and Understanding

To better explain the working principle of Conv1 self-

coding module, we visualize the coefficient of 1× 1 convo-

lutional kernel in Conv1 module and the feature map after

Conv1 encoding.

Fig. 5 shows the color mapping image of weights of each

1×1 convolutional kernel of ScNet trained on three random

splits. We find that the weights of the three Conv1 modules

of each random split are roughly arranged in (+, 0, -), with
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no fixed order, which is similar to the idea of the input dif-

ferential image. In addition, we find that the absolute value

of the three convolutional kernel weights is in three orders

of magnitude, which are the large value (positive mapping

to red, negative mapping to blue), the median value (posi-

tive mapping to orange, negative mapping to cyan) and the

small value (positive and negative mapping to green). For

example, in the first random split, the weight of the first

Conv1 (Conv1-1) is in a small magnitude and the weight

color mapping is almost green. The weight of the second

Conv1 (Conv1-2) is in a medium magnitude and the non-

zero weight color mapping is orange and cyan. The weight

of the third Conv1 (Conv1-3) is in a large magnitude and the

non-zero weight color mapping is red and blue. Comparing

the Conv1 of three random splits in Fig. 5, the Conv1 convo-

lutional kernel in the first random split best conforms to the

above description, and ScNet trained on the first random

Conv1-1

Conv1-2

Conv1-3

First Second Third

Fig.5. The color mapping of the weights of three parallel Conv1 modules
(“Conv1-1”, “Conv1-2” and “Conv1-3”) for three random splits (“First”,
“Second” and “Third”).

split achieves the best results (94.72% in the row of “ScNet”

in Table 1). The indirect difference of image color channels

coding in three orders of magnitude can extract richer fea-

tures between channels, which enable CNN to learn features

better.

Fig. 6 visualizes the feature maps after the Conv1 in the

first random split. The first row is a natural image, and the

second row is a computer-generated image. Each column

from left to right is the original input image and the respec-

tive feature map of three Conv1 modules with the weights in

small, medium and large magnitude. For the NI, the word-

s (red block of the first row of Fig. 6) becomes more and

more obscure from left to right. However, the words in the

CG image (red block of the second row of Fig. 6) are sharp

for three feature maps, which is similar to [31]. The work

of [31] has shown that high-frequency components across

NI color channels are strongly correlated and similar. The

feature maps of NI are harmonious and smooth, showing

good channel correlation. The feature maps of CG image,

e.g., paint and words on the wall, are abrupt and show poor

correlation. By automatically learning the correlation be-

tween color channels, the distance between NI and CG im-

age in the feature domain is increased, and thus the network

identification result is improved.

6 Conclusion

In this paper, channel and pixel correlation were used to

model the differences between NIs and CG images in terms

of statistical characteristics. We proposed a self-coding

NI

CGI

Input Conv1-1 Conv1-2 Conv1-3

Fig.6. Feature maps on 1 × 1 convolutional layer of three parallel Conv1
modules in the first random split.

module to extract features between image color channels

and designed a CNN to better extract features between im-

age pixels. We conducted a number of experiments to evalu-

ate the complete framework. Compared with other advanced

technologies, our framework obtained better detection per-

formance. More importantly, the self-coding module with

consecutive convolutional layers constructs a hybrid corre-

lation module, which can be directly combined with existing

CNN models, and this can further enhance their discrimina-

tion capacity. The source code of our method is attached and

will be publicly released with final version. In future work,
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we would like to apply this novel framework to other mul-

timedia security tasks, e.g., recolored image detection and

image manipulation detection.
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