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A B S T R A C T

Deep learning techniques have been extensively investigated for the purpose of further increasing the efficiency
of traditional video compression. Some deep learning techniques for down/up-sampling-based video coding
were found to be especially effective when the bandwidth or storage is limited. Existing works mainly differ
in the super-resolution models used. Some works simply use a single image super-resolution model, ignoring
the rich information in the correlation between video frames, while others explore the correlation between
frames by simply concatenating the features across adjacent frames. This, however, may fail when the textures
are not well aligned. In this paper, we propose to utilize neural texture transfer which exploits the semantic
correlation between frames and is able to explore the correlated information even when the textures are not
aligned. Meanwhile, an adaptive group of pictures (GOP) method is proposed to automatically decide whether
a frame should be down-sampled or not. Experimental results show that the proposed method outperforms the
standard HEVC and state-of-the-art methods under different compression configurations. When compared to
standard HEVC, the BD-rate (PSNR) and BD-rate (SSIM) of the proposed method are up to -19.1% and -26.5%,
respectively.
. Introduction

According to recent statistics, video traffic will account for about
2% of all Internet traffic by 2022 [1]. Video has become one of the
ajor ways for information transmission and communication. At the

ame time, new video types, including Ultra-High Definition (UHD),
irtual Reality (VR), Wide Color Gamut (WCG), and High Dynamic
ange (HDR), are emerging. These new video types provide a better
ser experience but at the cost of dramatically increased data volumes.
eanwhile, the number of video cameras in use keeps boosting in

ecent years, such as surveillance cameras, laptops, and smartphones.
onsequently, the total amount of global video data doubles every
wo years, which has been the bottleneck for data processing, storage,
nd transmission [2]. Therefore, more advanced video compression
echniques are of vital importance, which will support more efficient
torage and transmission of videos.

During the last three decades, the development of traditional sta-
istical video compression methods [3–7] has somewhat saturated and
ost recent endeavors turned to deep learning models [8–10], which
ave proved their capacity to discover knowledge from unstructured
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E-mail addresses: li.yu@nuist.edu.cn (L. Yu), moncef.gabbouj@tuni.fi (M. Gabbouj).

massive data and provide data-driven predictions. Deep learning has
the potential to provide new opportunities for further upgrading video
coding technologies. Inspired by the recent advances in deep learning,
many works have been proposed to leverage deep learning in video
compression and achieve significant improvements [11,12]. Among
these, Convolution Neural Network (CNN) based video enhancement
was proposed as a post-processing procedure at the decoder to improve
the perceptual quality of the reconstructed video [13–15]. To further
increase the compression ratio, some works propose to down-sample
the video prior to encoding and up-sample the decoded video using
CNN-based video super-resolution model, which is known as down/up-
sampling-based coding [16–18]. As reported in [19,20], the coding
of low-resolution video can perform both subjectively and objectively
better than the direct coding of full-resolution version at low bit rates.

Prior work in down/up-sampling-based coding is mainly inspired
by CNN-based single image super-resolution (SR), which outperforms
traditional methods with a huge margin [21]. For example, a CNN-
based up-sampling scheme is proposed in [16] for intra-frame coding.
A video coding scheme is proposed in [22], where a group of pictures
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(GOP) is entirely down-sampled and compressed, and each frame is
individually up-sampled using trained CNN models. Although these
methods have demonstrated the potential of down/up-sampling-based
coding with CNN for improving compression performance, they have
not exploited the correlation between neighboring frames.

To this end, several attempts have been made to use the correla-
tion between neighboring frames to further enhance the performance
[17,23,24]. Lin et al. [25] proposed to adaptively divide frames into
keyframes (KFs) and nonkey frames (NKFs), which are encoded at
the original resolution and at a reduced resolution, respectively. At
the decoder, NKFs are reconstructed with the corresponding motion
estimation block in KFs using CNN. In addition to frame-level down/up-
sampling-based coding, block-level down/up-sampling-based coding
are also proposed to improve the performance [17,26]. In [17], each
block in the P/B frame can either be compressed at the original reso-
lution or down-sampled and compressed at a lower resolution. At the
decoder, low-resolution blocks are up-sampled by the CNN models. The
block-based scheme provides the flexibility to deal with the spatially
variant texture and motion characteristics in natural videos. However,
it is quite computational intensive for block-level processing.

In this paper, frame-level down/up-sampling-based coding is em-
ployed to reduce the computational complexity. Meanwhile, a neural
texture transfer-based frame up-sampling is proposed to cope with the
spatially variant texture and motion characteristics in natural videos.
As in the existing frame-level schemes [23,25], features of the low-
resolution frame and the full-resolution reference frame are simply
concatenated, where only co-located features can be fused. However,
the best matching feature is not necessarily co-located, thus leading to
a sub-optimal result. While with neural texture transfer [27], a multi-
level matching is conducted in the neural space, instead of the raw
pixel space, to adaptively transfer texture from the reference images to
the target image. This matching scheme facilitates the semantic texture
transfer, which provides robust results even when irrelevant reference
images are provided. To achieve optimized performance, the neural
texture transfer model was fine-tuned on HEVC compressed video se-
quences. The proposed approach has been compared to both the HEVC
anchor [28] and the block-level scheme [17], with results demonstrat-
ing consistent improvements on the HEVC common test sequences [29]
for different QP ranges. Specifically, the main contributions of our work
are as follows:

• We propose to use the semantic texture transfer for down/up-
sampling-based video coding, which exploits the semantic corre-
lation between the reference frames and the target frame, leading
to significant enhancement of the frame-level SR performance.

• We propose a non-uniform compression scheme, where frames are
adaptively compressed at the original or reduced resolution. Thus,
frames encoded at the original resolution can be used as reference
frames for the restoration of other frames.

• Our model outperforms the state-of-the-art block-level down/up-
sampling-based coding scheme while requiring a lower computa-
tional complexity.

The rest of the paper is organized as follows. In Section 2, the deep
learning-based up-sampling methods and down/up-sampling-based
video coding methods are reviewed. Section 3 introduces the proposed
neural texture transfer assisted frame-level down/up-sampling-based
coding scheme, the CNN architecture of the neural texture transfer, and
the training strategy. Section 4 describes the experiments and results.
Finally in Section 6, conclusion and future work are presented.

2. Related work

In this section, we briefly overview the most related works, includ-
ing deep-learning-based image/video super-resolution and down/up-

sampling-based video coding methods.

2

2.1. Deep learning-based image/video super resolution

CNN-based image/video SR methods can be classified into two cat-
egories, namely, Single Image Super-Resolution (SISR) and Reference-
based Super Resolution (RefSR).

2.1.1. Single Image Super Resolution (SISR)
SISR is an ill-posed problem, which is defined as recovering a high-

resolution (HR) image from its low-resolution (LR) observation. As a
pioneering work based on CNN, [30] proposed the super-resolution
CNN (SRCNN), which used a three-layer full convolution network
to learn the complex non-linear mapping between LR and HR, and
achieved great improvement over previous works. Based on SRCNN,
VDSR [31] further improved the SR performance by increasing the
network depth and introducing a residual network in the reconstruc-
tion model. DRCN [32] was the first to introduce Recurrent Neural
Network (RNN) in the SR task. It enhances the SR performance by
using RNN, residual network, and a broader receptive field. Inspired
by densely connected convolutional networks [33], SRDenseNet [34]
used densely connected structures to fuse features at different levels
and achieved better performance. As the network depth continues to
deepen, the performance of super-resolution is also improved, but the
huge network parameters bring complex calculations. Therefore, some
lightweight super-resolution methods have also been proposed. [35]
uses grouped convolution to reduce the amount of calculation, [36]
proposes a recursive block method to reduce the amount of parameters,
and each recursive block parameter is fixed to be used recursively many
times. Although the above works achieved high PSNR scores, the high-
frequency details are lost in the reconstructed images, which leads to
poor subjective quality. Thus in SRGAN [37], the LR image was fed into
a Generative Adversarial Network (GAN) to achieve a visually plausible
result, instead of pursuing a high PSNR score.

2.1.2. Reference-based Super Resolution (RefSR)
RefSR compensates for the lost details in the LR images by utilizing

rich textures in the HR references (Ref) to relax the ill-posedness issue
and produce more realistic and finer textures with the aid of reference
images. Traditional RefSR methods assume the reference images share
similar content as that of the LR image with a good alignment. In
order to get well-aligned reference image and LR image pairs, the
landmark method was proposed in [38], which searched for well-
matched reference images from the Internet for the recovery of LR
image. In CrossNet [39], the reference image and the LR image are
aligned with the assistance of optical flow. However, the performance
of these methods degrade significantly and even become worse than
SISR methods if the reference image and LR image are not well aligned
in terms of content. Yet, an ideal RefSR algorithm should outperform
SISR when good reference images are provided and could achieve
a comparable performance as SISR when reference images are not
provided or do not possess relevant texture at all. Thus, in Super-
Resolution by Neural Texture Transfer (SRNTT) [27], the textures are
adaptively transferred from the reference images to the LR image in the
feature space, instead of the pixel domain. Specifically, SRNTT conducts
local texture matching and learns the complicated dependency between
LR and Ref textures in the feature space. Then, matched textures are
transferred to the final output through a deep model, while suppressing
dissimilar textures. Thus, even if a totally irrelevant reference image
is given, SRNTT can still achieve at least a similar result as SISR
methods. Inspired by the SRNTT model, we build a novel SR model
which can adaptively search for and transfer related textures between

the reference frame and the LR frame in this work.
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Fig. 1. Diagram of the proposed methods (in gray boxes), integrated into a typical video encoding/decoding flow. The video frames are adaptively divided into reference frames
(RF) and non-reference frames (NF) by the proposed adaptive GOP method. The RFs are encoded at full resolution, while NFs are encoded at reduced resolution using the standard
HEVC encoder. At the decoder, all frames are decoded by the standard HEVC decoder first. Then, the decoded full-resolution frame 𝑅𝐹𝐷 is used to facilitate the super-resolution
of low-resolution 𝑁𝐹𝐿𝑅

𝐷 using the proposed neural texture transfer network.
.2. Down/up-sampling-based video coding

Down/up-sampling-based video coding reduces the total bitrate at
he encoder by down-sampling the video spatially and recovers the
ideo with the assistance of SR at the decoder. The rapid development
f SR triggers the improvement of a down/up-sampling-based video
oding scheme. This down/up-sampling-based video coding scheme
chieves better rate–distortion performance when the storage or trans-
ission bandwidth is limited. Currently, the majority of such schemes
own-samples the video with a ratio of 1∕2 or 1∕4 at the encoder

and then recovers them to the original size via SR at the decoder.
Experimental results showed that, compared with the standard codec
(such as JPEG, H.264/AVC, HEVC, etc.), the above scheme achieves a
better rate–distortion performance. The down/up-sampling-based video
coding scheme can be implemented at a block-level or frame-level,
leading to two groups of methods.

2.2.1. Block-level down/up-sampling-based video coding
As for block-level methods, a CNN-based model for intra coding

was proposed in [16]. This was later extended to inter coding, where
inter-frame correlations are exploited to further improve the perfor-
mance [17]. In [26], the block resolution was adaptively tuned in the
enhancement layer encoder, which achieves better performance than
HEVC with low computational complexity.

2.2.2. Frame-level down/up-sampling-based video coding
Traditional methods for frame-level approach achieved better RD

performance at low bitrates [40–42]. Further improvement was
achieved in [43], where an image quality enhancement CNN was used
prior to the SR process, which alleviates the compression artifacts
effectively. All of these approaches are based on SISR technology suf-
fering from a common drawback, that is the generated high-resolution
image has various types of degradation, including those caused by
video down-sampling and artifacts generated during the SR process.
To address this problem, [20] employed an end-to-end deep convo-
lutional neural network to directly train the correlation degradation
model. In [44], the image enhancement network was applied before
super-resolution to reduce the artifacts brought by video compression.
Lin et al. [25] adaptively divided frames into keyframes (KFs) and
non-key frames (NKFs), which were encoded at the original resolu-
tion and at a reduced resolution, respectively. At the decoder, NKFs
were reconstructed with the corresponding motion estimation block
in the KFs using CNN. In order to improve the subjective quality,
the GAN-based method [45] was proposed to compensate for vari-
ous degradation caused by the compression and down/up-sampling

process. Nonetheless, the texture of the output image is not real.

3

Fig. 2. Proposed adaptive GOP, where frames in the video sequences are adaptively
divided into GOPs, with the first frame of each GOP encoded in full resolution (denoted
as 𝑅𝐹 ) and others at reduced resolution (denoted as 𝑁𝐹𝐿𝑅).

3. Methodology

As shown in Fig. 1, our proposed method first divides the video
sequence adaptively into groups of pictures, called as adaptive GOP.
The first frame of GOP (denoted as 𝑅𝐹 ) remains full resolution, while
the remaining frames in GOP (denoted as 𝑁𝐹 ) are down-sampled to
a reduced resolution (denoted as 𝑁𝐹𝐿𝑅) using bicubic down-sampling
(×1∕2). As for encoding, 𝑅𝐹 is encoded at full resolution. Then, the
encoder reconstructed version 𝑅𝐹𝐷 is bicubic down-sampled (×1∕2) to
assist the encoding of 𝑁𝐹𝐿𝑅. Only the full-resolution version of the
compressed 𝑅𝐹 is transmitted to the receiver.

While at the decoder, a similar process is performed. That is, the
decoded 𝑅𝐹𝐷 is bicubic down-sampled to assist the decoding of the
following frames in the GOP. Next, all the decoded frames at reduced
resolution 𝑁𝐹𝐿𝑅

𝐷 are up-sampled (×2) using bicubic interpolation (the
output is denoted as 𝑁𝐹𝐿𝑅↑

𝐷 ). Then, 𝑁𝐹𝐿𝑅↑
𝐷 and 𝑅𝐹𝐷 are fed into the

neural texture transfer model, where texture details in 𝑅𝐹𝐷 are used to
facilitate the reconstruction of 𝑁𝐹𝐿𝑅↑

𝐷 .

3.1. Adaptive GOP

The proposed adaptive GOP method divides the video sequence into
groups of pictures as shown in Fig. 2, where the first frame of each
GOP (i.e. 𝑅𝐹 ) is used to assist the reconstruction of the rest frames
in the GOP (i.e. 𝑁𝐹𝐿𝑅). Obviously, the reconstruction achieves better
performance when frames in one GOP share similar contents and tex-
tures. Thus, we divide the GOP based on the similarity between frames.
Consecutive frames sharing similar contents will be placed in one GOP.
Usually, the similarity between frames decreases as the further apart
are the frames, this will lead to small GOP sizes. The extreme case
is one frame per GOP, which turns out to be all-intra encoding. This
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Fig. 3. Neural texture transfer based frame super-resolution model.

contradicts the aim of bit saving. Thus, the proposed adaptive GOP
method aims to find a tradeoff between the reconstruction performance
(i.e. smaller GOP) and the bit saving (i.e. larger GOP).

We start from an initial GOP size of 𝑁 . Assume the first frame in
the current and next GOP are 𝑅𝐹𝑝 and 𝑅𝐹𝑙 respectively, the distance
between these two frames is 𝑁 − 1. The mean absolute error (MAE)
between 𝑅𝐹𝑝 and 𝑅𝐹𝑙 is

𝑀𝐴𝐸𝑝,𝑙 =

∑𝑚−1
𝑖=0

∑𝑛−1
𝑗=0

|

|

|

𝑓𝑙(𝑖, 𝑗) − 𝑓𝑝(𝑖, 𝑗)
|

|

|

𝑚 × 𝑛
, (1)

here 𝑓𝑝(𝑖, 𝑗) and 𝑓𝑙(𝑖, 𝑗) represent the pixel at position (𝑖, 𝑗) in 𝑅𝐹𝑝 and
𝐹𝑙, and the resolution of each frame is (𝑚, 𝑛). Then, the MAEs between

𝑅𝐹𝑝 and its subsequent frames in current GOP are calculated:

𝑀𝐴𝐸𝑥 =

∑𝑚−1
𝑖=0

∑𝑛−1
𝑗=0

|

|

|

𝑓𝑝(𝑖, 𝑗) − 𝑓𝑥(𝑖, 𝑗)
|

|

|

𝑚 × 𝑛
, (2)

where 𝑥 is the frame index in the range of (𝑝, 𝑙). Based on Eqs. (1) and
(2), the relative changing ratio (RCR) is calculated as below:

𝑅𝐶𝑅 =
𝑀𝐴𝐸𝑥
𝑀𝐴𝐸𝑝,𝑙

, (3)

which is used as the similarity measurement in our proposed adaptive
GOP method. When 𝑅𝐶𝑅 is larger than a predefined threshold 𝑇 , the
𝑥th frame will be set as another 𝑅𝐹 , and the frames from 𝑝 to (𝑥 − 1)
orms one GOP. Then, another round of evaluation will be applied to
etermine the next GOP, until all GOPs are formed.

.2. Texture transfer based frame SR model

Fig. 3 shows the overview of the neural texture transfer model,
hich is inspired by the reference-based image super-resolution
ork [27]. The input of the model is a couple of frames, i.e. 𝑅𝐹𝐷 of

ull resolution and 𝑁𝐹𝐿𝑅
𝐷 of down-sized (×1∕2) resolution. While the

utput of the model is the ×2 up-sampled version of 𝑁𝐹𝐿𝑅
𝐷 , i.e. 𝑁𝐹𝑆𝑅

𝐷 .
he ground truth is the corresponding original version of 𝑁𝐹 . The
oal of the network is to search for matching textures from 𝑅𝐹𝐷 in
he feature space, as the features are more robust to variations in color
nd illumination. The search process is conducted by the swap unit in
multi-scale way, where the 𝑁𝐹𝐿𝑅

𝐷 is first bicubic up-sampled to the
ame size as 𝑅𝐹𝐷. Both semantic and textural similarities are evaluated
n a swap unit to only transfer related textures while suppressing
nrelated textures. The swapped texture feature maps are then merged
nto a base deep generative network at different layers, as shown in the
exture transfer unit. The output frame is generated through layers in
he texture transfer unit to reach the target resolution.

The reconstruction loss 𝐿𝑟𝑒𝑐 is the 𝐿1 loss between 𝑁𝐹𝑆𝑅
𝐷 and 𝑁𝐹 ,

hich is calculated as follows:

= ‖𝑁𝐹 −𝑁𝐹𝑆𝑅‖ . (4)
𝑟𝑒𝑐 ‖

‖

𝐷 ‖

‖1

4

The texture difference between 𝑁𝐹𝑆𝑅
𝐷 and 𝑅𝐹𝐷 (denoted as texture

oss, 𝐿𝑡𝑒𝑥) is also considered, enforcing the adaptive texture transfer
rom 𝑅𝐹𝐷 to 𝑁𝐹𝑆𝑅

𝐷 . Specifically, the 𝐿𝑡𝑒𝑥 is computed as follows:

𝑡𝑒𝑥 =
∑

𝑙
𝜆𝑙

‖

‖

‖

𝐺𝑟
(

𝜙𝑙
(

𝑁𝐹𝑆𝑅
𝐷

)

⋅ 𝑆∗
𝑙
)

− 𝐺𝑟
(

𝑀𝑙 ⋅ 𝑆
∗
𝑙
)

‖

‖

‖𝐹
, (5)

here 𝐺𝑟(⋅) denotes the calculation of the Gram matrix. 𝑙 represents
ach neural layer, and 𝜆𝑙 is the normalization factor corresponding to
hat layer. 𝑀𝑙 is the exchange feature map obtained from 𝑅𝐹 ↑↓

𝐷 , and
∗
𝑙 is the weight map calculated by each patch in 𝑁𝐹𝐿𝑅↑

𝐷 and the most
imilar patch in 𝑅𝐹 ↑↓

𝐷 . F denotes the Frobenius norm.
Besides the texture and reconstruction losses, 𝐿𝑡𝑒𝑥 and 𝐿𝑟𝑒𝑐 men-

tioned above, perceptual loss 𝐿𝑝𝑒𝑟 and adversarial loss 𝐿𝑎𝑑𝑣 are also
used in the loss function. The perceptual loss [46] has been widely used
in recent SR tasks for better visual quality. The 𝐿𝑝𝑒𝑟 is computed as
follows:

𝐿per =
‖

‖

‖

𝜙𝑖 (𝑁𝐹 ) − 𝜙𝑖
(

𝑵𝐹𝑆𝑅
𝐷

)

‖

‖

‖2
, (6)

where 𝜙𝑖 denotes the feature map of the 𝑖th layer in the VGG19. As
ANs [47] can significantly enhance the sharpness and visual quality
f the synthesized images, we adopt WGAN-GP [48], which proposes a
radient norm penalty to make the training stable and achieve better
esults. The 𝐿𝑎𝑑𝑣 is computed as follows:

𝑎𝑑𝑣 = E
𝒙̃∼P𝑔

[𝐷(𝒙̃)] − E
𝒙∼P𝑟

[𝐷(𝒙)]

+𝜆 E
𝒙̂∼P𝒙̂

[

(

‖

‖

∇𝒙̂𝐷(𝒙̂)‖
‖2 − 1

)2
]

. (7)

Ultimately, the overall loss is defined as:

= 𝜆𝑡𝑒𝑥 × 𝐿𝑡𝑒𝑥 + 𝜆𝑟𝑒𝑐 × 𝐿𝑟𝑒𝑐

+𝜆𝑝𝑒𝑟 × 𝐿𝑝𝑒𝑟 + 𝜆𝑎𝑑𝑣 × 𝐿𝑎𝑑𝑣. (8)

The texture matching procedure plays a vital role, which enables
the texture transfer between misaligned patches. Through extensive ex-
periments, we found that optimal matching performance was obtained
when the QPs for encoding 𝑅𝐹 and 𝑁𝐹 follows the following rule:

𝑄𝑃 (𝑅𝐹 ) = 𝑄𝑃 (𝑁𝐹 ) + 10. (9)

here constant 10 is selected by thorough experiments.

.3. Training configuration

For referenced SR problems, the similarity between a low-resolution
mage and the Ref images has a vital influence on the final result.
n general, frame pairs with different levels of similarity should be
rovided for training. Here, we train our network on the CUFED
ataset [49], which includes image couples of four similarity levels.
here are a total of 11,871 paired patches of size 160 × 160 in the

CUFED training set.
The model is first trained on the original CUFED dataset with 30

epochs to learn the texture transfer for various similarity levels. Then,
the model is further fine-tuned with a compressed CUFED dataset
with another 5 epochs, to adapt to various compression artifacts. The
compression is fulfilled with HEVC HM 12.1,1 using Low-Delay P
configuration. The QP for the Ref image is set to 46 and the QP for
the low-resolution image is 36. The intra period is set to 4.

The network is implemented with Tensorflow 1.13.1. Adam opti-
mizer is used for training the model with a learning rate of 10−4. When
he trained model is used in the pipeline as shown in Fig. 1, 𝑅𝐹 and
𝑁𝐹 can be directly inputted into the model without any cropping.

1 https://hevc.hhi.fraunhofer.de/trac/hevc/milestone/HM-12.1

https://hevc.hhi.fraunhofer.de/trac/hevc/milestone/HM-12.1
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Table 1
BD-rate results of our scheme compared to HEVC (Y stands for Y-PSNR, S stands for Y-SSIM, QP 42–51).

Class Sequence RA LDB LDP

Y (%) S (%) Y (%) S (%) Y (%) S (%)

Class A (2560 × 1600) Traffic −12.4 −13.2 ∼ ∼ ∼ ∼
PeopleOnStreet −5.4 −6.4 ∼ ∼ ∼ ∼

Class B (1920 × 1072)

Kimono −15.4 −19.6 −15.1 −19.3 −19.7 −29.4
ParkScene −17.6 −17.9 −16.0 −16.0 −18.4 −17.1
Cactus −13.1 −9.7 −11.3 −7.7 −12.7 −9.0
BasketballDrive −2.5 −3.5 −2.1 −2.6 −3.9 −7.2
BQTerrace −2.5 5.2 0.4 8.7 1.9 9.7

Class C (832 × 480)
BasketballDrill −6.8 −5.7 −4.9 −5.7 −6.3 −8.4
BQMall 5.2 5.0 6.8 6.4 5.8 5.4
RaceHorses −10.0 −9.2 −9.4 −8.8 −10.9 −10.8

Class D (416 × 240)

BasketballPass −8.1 −7.2 −8.2 −6.9 −9.6 −8.4
BQSquare −6.5 −6.6 −5.9 −5.9 −5.5 −5.8
BlowingBubbles −10.9 −7.3 −8.9 −5.0 −10.2 −6.0
RaceHorses −8.7 −8.5 −8.5 −8.6 −9.0 −9.0

Class E (720p)
FourPeople ∼ ∼ −3.0 −7.5 −3.3 −8.4
Johnny ∼ ∼ −5.5 −6.0 −6.5 −8.3
KristenAndSara ∼ ∼ −4.2 −8.6 −5.0 −10.7

Average

Class A −8.9 −9.8 ∼ ∼ ∼ ∼
Class B −10.2 −9.1 −8.8 −7.4 −10.6 −10.6
Class C −3.9 −3.3 −2.5 −2.7 −3.8 −4.6
Class D −8.6 −7.4 −7.9 −6.6 −8.6 −7.3
Class E ∼ ∼ −4.2 −7.4 −4.9 −9.1

Average of Classes A–E −7.9 −7.4 −5.9 −6.0 −7.0 −7.9
4. Experiment

4.1. Experimental settings

The proposed scheme is implemented based on the reference soft-
ware of HEVC (HM 12.1). The HEVC common test sequences [29] are
used to evaluate the performance of the proposed method, with various
resolutions, known as Class A, B, C, D, E.2 None of these sequences was
used in training the SR model in Fig. 3. The Low-Delay P (LDP), Low-
Delay B (LDB), and Random Access (RA) configurations are used in the
following experiments, with QP values of 32, 37, 42, and 47. The initial
GOP size 𝑁 is set as 4.

The 𝑅𝐶𝑅 threshold 𝑇 is set as 0.55. We empirically set the weights
in Eq. (8) as 𝜆𝑡𝑒𝑥 = 1𝑒 − 4, 𝜆𝑟𝑒𝑐 = 1.0, 𝜆𝑝𝑒𝑟 = 1𝑒 − 4, 𝜆𝑎𝑑𝑣 = 1𝑒 − 6.

Our method is compared to the HEVC anchor and the block-level
own/up-sampling-based coding method [17]. To evaluate the per-
ormance, we adopt PSNR and SSIM [50] for the Y-component. The
D-rate [51] is also used to compare different coding schemes.

The experiments are conducted on a PC equipped with Intel(R)
ore(TM) i7-9700K CPU, 32 GB of RAM, NVIDIA GeForce RTX 2080Ti
PU.

.2. Performance comparison with the standard HEVC

Table 1 summarizes the BD-rate between our method and the
tandard HEVC. The QPs of NF are between {32, 35, 38, 41}, while
Ps of RF between {42, 45, 48, 51}. Generally, our proposed method
utperforms the standard HEVC over all encoding configurations for
equences of different resolutions. The average BD-rate (PSNR/SSIM) of
A is (−8.2%/−7.2%), LDB is (−6.2%/−5.8%) and LDP is
−7.3%/−7.6%). Since our method adopts the reference-based super-
esolution network, the texture of the reference frame plays a very
mportant role in the reconstruction effect. For video sequences with
imple motion and small changes in video frames, the adjacent frames
ave more similar textures, and naturally the reconstructed video

2 In order to meet the resolution requirements of HEVC CU division, the
esolutions are slightly cropped, such as Class B sequences are cropped into a
esolution of 1920 × 1072.
5

frames have better visual quality. Therefore, our method presents
higher coding gain for sequences with uncomplicated motion than
those with complex motion. For example, the Kimono sequence in Class
B achieves the highest BD-rate (PSNR/SSIM) reduction when encoded
using the LDP (−19.7%/−29.4%).

When comparing the results of sequences with different resolutions,
our method has a higher gain for high-resolution sequences. For ex-
ample, RaceHorses has two sequences with different resolutions (Class
C and Class D), and their sequence contents are consistent. For low
resolution Class D RaceHorses sequences, our method achieves BD-
rate (PSNR/SSIM) for RA of (−8.7%/−8.5%), LDB of (−8.5%/−8.6%)
and LDP of (−9.0%/−9.0%). However, for high-resolution Class C
RaceHorses sequences, our method achieves the reduction of BD-rate
(PSNR/SSIM) for RA of (−10.0%/−9.2%), LDB of (−9.4% / −8.8%)
and LDP of (−10.9%/−10.8%). This is because high-resolution im-
ages contain more information than low-resolution images for texture
transfer.

The R–D curves of our proposed method and standard HEVC under
different encoding configurations for different video sequences are
shown in Fig. 4. For all sequences, our scheme achieves a better
performance than the standard HEVC at low bit rates. At the same time,
competing performance is achieved at high bit rates.

4.3. Performance comparison with other methods

In order to compare with existing work [17], we choose a similar
QP setting, i.e. the QPs of NF are {32, 35, 38, 41} and the QPs of RF
are {42, 45, 48, 51}. The method in [17] uses the relevant information
of the surrounding reference frames to reconstruct the video frames at
the block level. Different from the block-based reference that has less
useful information to be used, our method migrates similar textures at
the frame level, and exploits the texture information of three different
scales for the reconstruction, hence exploiting the global information
of the reference frame relative to the block level. Table 2 presents
the BD-rates of our method compared with [17] under three different
configurations of RA, LDB, and LDP. Overall, we can observe that our
method outperforms [17] in sequences of Class A, B, D, and E, but not
for sequences of Class C. This is because sequences in Class C, such as

BQMall, contain complex textures, which are severely lost during the
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Table 2
BD-rate results of our scheme and [17] compared to HEVC (Y stands for Y-PSNR, S stands for Y-SSIM, QP 32–47). Bold values show the best BD-rate (%) on average.

Class Sequence
RA LDB LDP

Y (%) S (%) Y (%) S (%) Y (%) S (%)

[17] Ours [17] Ours [17] Ours [17] Ours [17] Ours [17] Ours

Class A (2560 × 1600) Traffic −6.6 −8.5 −9.6 −10.4 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PeopleOnStreet −3.6 −2.4 −3.9 −3.4 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Class B (1920 × 1072)

Kimono −5.8 −11.7 −7.4 −16.5 −2.7 −19.1 −4.5 −19.6 −4.2 −16.2 −9.6 −26.5
ParkScene −2.3 −13.5 −2.6 −13.4 −1.7 −14.5 −2.1 −14.0 −2.3 −14.4 −3.7 −13.3
Cactus −3.8 −9.4 −4.0 −6.1 −3.3 −9.8 −3.8 −5.3 −3.8 −8.6 −4.7 −5.0
BasketballDrive −7.5 0.3 −8.6 0.1 −7.0 −4.8 −9.2 −1.3 −9.5 −0.1 −13.5 −3.2
BQTerrace −1.5 2.5 −1.0 11.1 −2.9 −2.3 −2.4 5.8 −3.7 −2.4 −3.2 6.8

Class C (832 × 480)
BasketballDrill −6.4 −3.1 −7.7 −3.8 −5.7 −4.3 −7.9 −4.6 −7.9 −2.7 −10.3 −2.9
BQMall −2.3 9.8 −3.1 7.9 −1.9 8.4 −3.1 6.8 −3.3 11.1 −4.8 8.4
RaceHorses −5.9 −8.3 −8.2 −5.8 −2.9 −8.5 −4.2 −5.6 −4.1 −8.6 −6.5 −6.7

Class D (416 × 240)

BasketballPass −1.0 −5.1 −0.7 −4.3 −1.0 −6.8 −1.1 −5.3 −0.6 −6.7 −0.6 −5.6
BQSquare 0.1 −4.1 −0.4 −3.7 0.2 −3.3 −0.0 −1.6 −0.4 −2.5 −1.5 −0.7
BlowingBubbles −2.6 −7.8 −2.7 −5.2 −1.8 −6.4 −2.3 −4.0 −2.8 −8.2 −3.9 −5.2
RaceHorses −4.1 −5.1 −5.0 −5.1 −1.3 −4.8 −1.7 −4.4 −2.5 −5.7 −3.4 −5.7

Class E (720p)
FourPeople ∼ ∼ ∼ ∼ −2.1 −2.3 −3.0 −9.4 −2.2 −1.2 −3.5 −9.8
Johnny ∼ ∼ ∼ ∼ −2.9 −3.6 −1.8 −2.8 −4.0 −3.3 −3.6 −2.7
KristenAndSara ∼ ∼ ∼ ∼ −2.7 −2.8 −3.5 −9.1 −2.2 −2.0 −3.8 −11.4

Average

Class A −5.1 −5.5 −6.8 −6.9 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
Class B −4.2 −6.4 −4.8 −5.0 −3.5 −10.1 −4.4 −6.9 −4.7 −8.3 −6.9 −8.2
Class C −4.9 −0.5 −6.3 −0.6 −3.5 −1.5 −5.1 −1.1 −5.1 −0.1 −7.2 −0.4
Class D −1.9 −5.5 −2.2 −4.6 −1.0 −5.3 −1.3 −3.8 −1.6 −5.8 −2.4 −4.3
Class E ∼ ∼ ∼ ∼ −2.6 −2.9 −2.8 −7.1 −2.8 −2.2 −3.6 −8.0
Fig. 4. Rate–distortion (R–D) curves of several sequences: (a) BasketballPass (LDP); (b) Cactus (LDB); (c) Kimono (LDP); (d) ParkScene (RA); (e) RaceHorses (LDB); (f) Traffic
(RA). For each chart, the 𝑥-axis (horizontal) represents bitrate (kbps); 𝑦-axis (vertical) represents PSNR (dB).
down/up-sampling process. As a result, the details for textual match-
ing are not available in the proposed SR model, leading to the poor
performance. For example, in sequence BQMall, as shown in Fig. 5,
the textures of the wall and the billboard are lost during the down/up-
sampling process. Thus, when using the reference frame for texture
matching and migration, the texture information in the reference frame
cannot be correctly matched and inaccurate details are migrated.

The average performance gain at B and D resolution is better
than the other two resolutions. Under B resolution, the highest BD-
rate (PSNR) reduction of LDB (−10.1%) and BD-rate (SSIM) reduction
of LDP (−8.2%) are achieved, while the method proposed in [17]
provides BD-rate (PSNR) reduction of LDB (−3.5%) and BD-rate (SSIM)
reduction of LDP (−6.9%). At D resolution, the highest BD-rate (PSNR)
reduction of LDP (−5.8%) and BD-rate (SSIM) reduction of RA (−4.6%)
are obtained, while [17] provides BD-rate (PSNR) reduction of LDP
(−1.6%) and BD-rate (SSIM) reduction of RA (−2.2%). From the results
of a single test sequence, for the sequence with little motion change, our

method can make full use of the information of the reference frame.

6

For example, the Kimono test sequence at B resolution achieved the
highest BD-rate (PSNR) reduction of LDB (−19.1%) and BD-rate (SSIM)
reduction of LDP (−26.5%).

4.4. Subjective comparison

For video compression, the quality of a video frame reconstructed
at the decoder should be evaluated both objectively (PSNR/SSIM), as
well as subjectively. In the latter, an evaluation that conforms to the
human visual perception is an effective video quality evaluation metric.
Therefore, we make a subjective comparison of the video frames in
Traffic, PeopleOnStreet, Cactus, and ParkScene under the Class A test
sequence. For class B video sequences, the Bicubic method is used
to downsample the video sequence. It can be seen from Fig. 6 that
our proposed method can restore a clearer texture in medium and
low quality frames. For better comparison, some selected areas are

enlarged. In these figures, the frames encoded using the proposed
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Fig. 5. Analysis of the poor performance for sequence BQMall. From top to bottom
re the results of HEVC (LDP, QP42), bicubic down/up-sampling, and the proposed SR
odel. It can be seen that the detailed textures are lost during the down/up-sampling
rocess, such as the vertical lines on the wall. Thus in the subsequent texture search
n the proposed SR model, the vertical lines cannot be matched and recovered.

odel have fewer artifacts, especially in the selected regions. At the
ame time, for sequences of different scenes, our solution offers good
exture restoration results. For medium quality frames, the characters
n the Traffic and Cactus sequences are clearer and the patterns are
ore complete. Our results also produce fewer artifacts. For outdoor

ports sequences such as ParkScene and PeopleOnStreet, the texture
estoration effect of the pillars in the park and the texture of the shirt
re closer to those in the original images, and the restoration results
lso present a finer surface and clearer edge contours. For low quality
rames, our method also achieves good results. In the RaceHorses
equence, the video frame recovered by our method is more detailed,
uch as the reflective part on the boot. In BlowingBubbles, our method
akes the contour between fingers more obvious and closer to the

riginal image. For BQTerror sequence, our method can better restore
he texture boundary region of the chair. Finally, for the BasketballDrill
equence, our method is more precise for the texture detail restoration
f the basketball net, which is close to the original image. As can be
een, our method has good subjective quality when there are sharp
dges and more details in medium and low quality frames. Recall that
he signal-to-noise ratio of the proposed algorithm is higher than that
f the standard HEVC coding. As a result, our method has both better
bjective video quality and subjective quality than the standard HEVC.

. Ablation studies

.1. The effect of texture transfer based frame SR model

As shown in Fig. 7, the PSNR value of each frame before and
fter the texture transfer-based SR are depicted. The blue curves are
he PSNR values of each frame before the texture transfer-based SR,
.e. only bicubic up-sampled. While the red curves are the PSNR values
f each frame after the proposed texture transfer-based SR model.
verall, the PSNR gain of the proposed texture transfer-based SR model

s from 0.8 to 1.3 dB, and the average gain is around 1 dB.
At the same time, we also conducted experiments on the HEVC

tandard test sequences. We randomly selected one sequence from

lass A–E for experiments. When only texture transfer was used, the

7

Table 3
BD-rate results with AKS/Adaptive GOP and Texture Transfer.

Class Sequence AKS [25] Adaptive GOP Texture Transfer BD-rate

Class A Traffic
✓ −7.2

✓ ✓ −3.7
✓ ✓ −12.4

Class B Cactus
✓ −8.3

✓ ✓ −5.2
✓ ✓ −13.1

Class C RaceHorses
✓ −4.9

✓ ✓ −2.5
✓ ✓ −8.7

Class D BlowingBubbles
✓ −7.1

✓ ✓ −2.9
✓ ✓ −10.9

Class E Johnny
✓ −3.3

✓ ✓ −1.4
✓ ✓ −5.5

Table 4
Ablation studies of the loss functions.
𝐿𝑟𝑒𝑐 𝐿𝑡𝑒𝑥 𝐿𝑝𝑒𝑟 𝐿𝑎𝑑𝑣 PSNR SSIM

✓ 27.0615 0.7203
✓ ✓ 27.5613 0.7332
✓ ✓ ✓ 27.5409 0.7338
✓ ✓ ✓ 27.5462 0.734
✓ ✓ ✓ ✓ 27.5459 0.7345

experimental results were shown in Table 3, and achieved certain
coding performance improvement. BD-rate was reduced by −7.2%,
−8.3%, −4.9%, −7.1%, −3.3% respectively.

5.2. The effect of adaptive GOP

The proposed method uses RF to reconstruct NF, so the quality of
RF has an important impact on the result of NF reconstruction. For
a fixed GOP, the intra-frame information of the RF is not necessarily
applicable to all NFs in the current GOP. As we get farther from
the reference frame, the similarity between RF and subsequent NF
gradually decreases, and even scene jumps occur. At this time, NF
cannot make full use of RF information. Therefore, the adaptive GOP
method is adopted to find two RFs adaptively, and the key information
of RF is effectively used in the most similar GOP. As a result, the bit
rate is slightly increased, but the video quality is greatly improved. In
order to validate the effectiveness of the proposed adaptive GOP, we
compare the RD curve of adaptive GOP with the curve with a fixed
GOP of 4 in Fig. 8. It can be seen that the RD curve of adaptive GOP
achieves a better performance than the RD curve with a fixed GOP of 4.
For all sequences, adaptive GOP achieves better results than fixed GOP
of 4. For example, for sequence Traffic in Class A, when fixed GOP is
used, BD-rate was reduced by −7.2%. When adaptive GOP is used, BD-
rate was reduced by −12.4%, which is −5.2% higher than that of fixed
GOP. These results illustrate that the proposed adaptive GOP method in
this model is effective. Specifically, the adaptive GOP algorithm enables
the video frames in each GOP to maintain a high temporal correlation.
Therefore, the down-sampled frames can make full use of the relevant
information of the reference frame for better reconstruction.

5.3. Contribution of each loss function

In this section, we discuss the contribution of each loss function. As
shown in Table 4, when only 𝐿𝑟𝑒𝑐 loss is used, the PSNR and SSIM are
the lowest, because 𝐿𝑟𝑒𝑐 loss only carries out point-to-point learning
without considering the texture difference between RF and NF. When
𝐿 is added, PSNR and SSIM are greatly improved, which enables the
𝑡𝑒𝑥
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Fig. 6. Subjective comparisons between HEVC, bicubic and our method (PSNR/SSIM) over standard HEVC test sequences: Cactus (LDP, QP42), Traffic (RA, QP42), ParkScene
LDB, QP42), PeopleOnStreet (RA, QP42), RaceHorses (LDP, QP45), BlowingBubbles (LDB, QP45), BQTerrace (RA, QP45), BasketballDrill (RA, QP48).
etwork to more effectively learn the texture difference between RF
nd NF, so as to force the adaptive texture to transfer from RF to NF.
𝑝𝑒𝑟 and 𝐿𝑎𝑑𝑣 are proposed to improve the visual effect. It can be seen

rom the table that, after adding 𝐿𝑝𝑒𝑟 and 𝐿𝑎𝑑𝑣, the objective evaluation
ndex PSNR decreases slightly, while the SSIM index, which is more in
ine with human vision, is further improved. From the penultimate two
nd three rows in the table, it can be seen that 𝐿𝑎𝑑𝑣 is more effective

in our network than 𝐿𝑝𝑒𝑟. When all losses are used, PSNR can maintain
a high level, and SSIM reaches the highest level. Therefore, we finally
selected the fusion of four losses in our work.

6. Conclusion

A neural texture transfer-assisted video coding with an adaptive
up-sampling scheme is proposed in this paper. This scheme adap-
tively decides whether a frame should be down-sampled or not. In
8

the decoder, the down-sampled frames are restored by exploring their
correlations with the frames that are not down-sampled using neural
texture transfer in a multi-scale manner. Experimental results show
that, compared with HEVC and state-of-the-art method [17], our model
provides better performance in terms of PSNR, SSIM, and visual per-
ception, with up to (−19.1%) BD-rate (PSNR) and (−26.5%) BD-rate
(SSIM) reduction.

In the future, we plan to expand this work in several directions.
First, the quality of the reference frame directly affects the quality of
the final reconstruction. We would like to improve the visual quality
of the reference frame before the neural texture transfer, so as to
alleviate the degradation caused by video compression. Second, we
plan to use a wider range of reference video frames to jointly restore
the down-sampled video frame, so as to obtain better performance.
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Fig. 7. Comparison of the effect of image reconstruction with proposed SR model.
Results for sequences: (a) BasketballPass (LDP, QP42); (b) Cactus (LDB, QP42); (c)
PeopleOnStreet (RA, QP42); (d) Traffic (RA, QP42). The red line represents proposed
SR model, the blue line represents bicubic. We use the odd-numbered frames of the
first 20 frames as a reference to restore the even-numbered frames. For each chart,
the 𝑥-axis (horizontal) represents frame_index; meanwhile, 𝑦-axis (vertical) represents
PSNR (dB).

Fig. 8. Rate–distortion (R–D) curve comparison between adaptive GOP and fixed GOP
f 4 for sequences BasketballPass (LDB) and Kimono (RA). For each chart, the 𝑥-axis
horizontal) represents bitrate (kbps), and 𝑦-axis (vertical) represents PSNR (dB).
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