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Image Inpainting with Local and Global Refinement
Weize Quan, Ruisong Zhang, Yong Zhang, Zhifeng Li, Jue Wang, and Dong-Ming Yan

Abstract—Image inpainting has made remarkable progress
with recent advances in deep learning. Popular networks mainly
follow an encoder-decoder architecture (sometimes with skip
connections) and possess sufficiently large receptive field, i.e.,
larger than the image resolution. The receptive field refers to
the set of input pixels that are path-connected to a neuron.
For image inpainting task, however, the size of surrounding
areas needed to repair different kinds of missing regions are
different, and the very large receptive field is not always optimal,
especially for the local structures and textures. In addition, a
large receptive field tends to involve more undesired completion
results, which will disturb the inpainting process. Based on
these insights, we rethink the process of image inpainting from
a different perspective of receptive field, and propose a novel
three-stage inpainting framework with local and global refine-
ment. Specifically, we first utilize an encoder-decoder network
with skip connection to achieve coarse initial results. Then,
we introduce a shallow deep model with small receptive field
to conduct the local refinement, which can also weaken the
influence of distant undesired completion results. Finally, we
propose an attention-based encoder-decoder network with large
receptive field to conduct the global refinement. Experimental
results demonstrate that our method outperforms the state
of the arts on three popular publicly available datasets for
image inpainting. Our local and global refinement network can
be directly inserted into the end of any existing networks to
further improve their inpainting performance. Code is available
at https://github.com/weizequan/LGNet.git.

Index Terms—Image inpainting, Neural networks, Receptive
field.

I. INTRODUCTION

IMAGE inpainting refers to the completion of missing
regions in digital images. The goal of image inpainting

is to fill the missing regions with semantically reasonable
and visually realistic content, which is also consistent with
the remaining parts of the image (see Fig. 1 for examples).
It can be used as an image editing tool, e.g., to remove
unwanted objects from an image or to restore detective regions
in damaged paintings.

Early works can be classified into two categories: diffusion-
based approaches [1]–[3] and patch-based approaches [4]–
[8]. The former diffuse the information from the surrounding
regions to the interior of the missing regions based on partial
differential equations and variational methods, while the latter
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propagate the image contents from known regions to unknown
regions via appearance copying and pasting. These methods
have achieved great visual effects when handling small missing
regions. However, for large missing regions they cannot create
large structures and objects that are not present anywhere else
in the image.

To solve this problem, recent work resorts to deep learning,
e.g., using convolutional neural networks (CNNs) [9], [10]
and generative adversarial networks (GANs) [11]. From the
perspective of network design, these inpainting methods can
be roughly categorized into one-stage networks (one genera-
tor) [12]–[18], two-stage networks (two generators) [19]–[24],
and progressive networks (one or multiple generators applied
in an iterative manner) [25]–[29]. In literature, several aspects
have gained more attentions, e.g., simultaneous or step-wise
structure and texture inpainting [22], different attention strate-
gies for context information collection [19], [30], progressive
filling from border to center [28], and so on.

In this paper, we design an inpainting network from a
different perspective, i.e., receptive field, which refers to the set
of input pixels that are path-connected to a neuron [31]. Our
work is inspired from three points: (1) The image inpainting
problem is relevant to the receptive field, and the scope of
neighboring areas needed to repair different kinds of missing
regions are different. (2) Very large receptive field, as most
previous methods pursued, may not be optimal, especially for
repairing the local structures and details. Meanwhile, a large
receptive field tends to contain more undesired completion
results, which potentially have the negative effect on the
inpainting process, e.g., the inpainting of local patterns as
shown in the first two rows of Fig. 2. (3) The receptive field
is an important aspect of deep neural networks, which has
gained more attention in image classification and semantic
segmentation [32], [33]. However, it is less focused in image
inpainting with deep learning. Therefore, we propose a three-
stage inpainting framework with respect to the receptive field.
We first apply a coarse inpainting network with large receptive
field (covering the whole image) to fill the holes, which can
complete the primary structure and partial texture details.
Then, we propose the local and global refinement networks
with different sizes of receptive fields to improve the inpainting
results. These two sub-networks separately pay attention to the
“local inpainting” and “global inpainitng”, and are combined
to obtain the “whole inpainting”.

Our work provides the following contributions:

• We propose a local refinement network with small recep-
tive field to improve the inpainted image. This shallow
deep network can repair some missing regions, e.g., the
local structures and texture details, according to the sur-
rounding local regions and prevent from the interference

https://github.com/weizequan/LGNet.git
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Fig. 1. Selected image inpainting results of our proposed method on CelebA-HQ (left), Places2 (middle), and Paris StreetView (right) datasets, respectively.

of long-distance failed completion results after the coarse
inpainting stage.

• We propose an attention-based global refinement net-
work with large receptive field to further enhance the
completion result. This network can further improve the
visual quality using the global information, especially for
the large structures and long-distance texture patterns. In
addition, the attention computation is more robust and
stable due to the relatively good quality of the output of
the local refinement network.

• Our proposed inpainting framework achieves the state-
of-the-art performance on three popular public inpaint-
ing datasets: CelebA-HQ [34], Places2 [35], and Paris
StreetView [36].

The rest of this paper is organized as follows. Section II
reviews related work and highlights the differences between
our method and previous works. Section III presents the
motivation, network architecture, and loss functions of the
proposed method. Section IV evaluates the performance of our
method and compares with state-of-the-art methods. Section V
draws the conclusions and discusses the future works.

II. PRIOR ART

Existing image inpainting methods are mainly divided
into two categories: traditional inpainting methods and deep-
learning-based inpainting methods.

A. Traditional Inpainting Methods

This kind of works mainly include diffusion-based meth-
ods [1]–[3] and patch-based methods [4]–[8]. We refer readers
to the surveys [37], [38] for more details of the traditional
approaches.

Diffusion-based methods. The term diffusion describes
the process of propagating local information with smoothness
constraints. The use of diffusion for image inpainting was
pioneered by Bertalmio et al. [1], specifically, the anisotropic
diffusion was iteratively applied without losing sharpness in
the reconstruction process. Based on the joint interpolation of
the image gray levels and the gradient directions, Ballester

et al. [2] formulated the image inpainting as a variational
problem. Tschumperlé and Deriche [3] proposed a single
generic anisotropic diffusion equation and obtained the better
inpainting results. However, these approaches cannot handle
relatively large missing regions due to the limited extended
prediction from the boundary.

Patch-based methods. The core idea of patch-based meth-
ods is to propagate the appearance information from the back-
ground regions to the missing regions based on the patch-level
similarity. To reduce the time costs for patch matching, Barnes
et al. [4] proposed a randomized nearest-neighbor patch
matching algorithm, namely, PatchMatch, which is widely
used in the editing tools. Through using mid-level structural
cues, Huang et al. [6] proposed an automatic completion
algorithm based on augmented patch-based matching. Ding
et al. [8] proposed a non-local texture similarity measure to
select multiple candidate patches, and then applied the α-
trimmed mean filter to obtain the inpainted results. Moreover,
patch-based method is also often used in exemplar-based
inpainting [5], [7]. These methods mainly depend on the
low-level information, and thus cannot generate semantically
correct results for large missing regions.

B. Deep-learning-based Inpainting Methods

From the perspective of network design, existing deep-
learning-based image inpainting methods can be roughly clas-
sified into three types: one-stage, two-stage, and progressive
methods.

One-stage methods. In early works, Pathak et al. [12]
designed an encoder-decoder architecture which is trained via
a combination of pixel-wise reconstruction loss and adversarial
loss [11]. To improve the consistency of image completion,
Iizuka et al. [13] introduced the global and local context
discriminators to train the fully-convolutional completion net-
work. They mainly focus on the discriminator design while
adopting a simple encoder-decoder network as the generator.
However, our core idea is to design an efficient inpainting
generator according to the receptive field, which is important
for image inpainting. In addition, a more efficient patch-based
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discriminator was proposed by [20] and adopted by many
following works. Liu et al. [14] designed a partial convolution
operation followed by an automatic mask-update step to better
fill irregular holes. Inspired by several existing methods [19],
[39], [40] that use attention mechanism to fill in the missing
regions, Zeng et al. [15] proposed a pyramid-context encoder
network for image completion via attention transfer. Xie et
al. [16] generalized the partial convolution [14] by introducing
learnable bidirectional attention maps. To jointly recover the
structure and texture, Liu et al. [17] fused the texture features
(from the shallow layers of the encoder) and structure features
(from the deep layers of the encoder) together via feature
equalization. Liao et al. [41] utilized the semantic segmen-
tation map to guide the inpainting process of mixed scenes,
which needs additional semantic segmentation annotations
during the training stage. More recently, Zhang et al. [18]
proposed a pixel-wise dense detector to localize the artifacts of
completed results, and this position information is inserted into
the reconstruction loss to better train the completion network.
With the same purpose, Hui et al. [42] devised the feature cen-
ter alignment constraint, and designed a self-guided regression
loss to enhance the semantic details. Wang et al. [43] proposed
the validness migratable convolution and regional composite
normalization modules to better utilize the valid pixels during
the inpainting process. Similarly, Zhu et al. [44] proposed
a mask-aware convolution and point-wise normalization for
image inpainting, standing from the dynamic concept as well.
These methods sometimes suffer from the noticeable artifacts,
e.g., smooth textures and incorrect semantics, due to a lack of
adequate constraints.

Two-stage methods. Yu et al. [19] proposed an improved
generative inpainting framework consisting of a coarse net-
work and a refinement network. In the refinement network,
they introduced contextual attention to model the long-term
correlation. Inspired by [14], Yu et al. [20] subsequently
upgraded the previous work [19] by introducing gated convo-
lution and a patch-based GAN discriminator. Nazeri et al. [21]
proposed an edge-guided two-stage image inpainting method.
They first recovered the edge map of the missing region, and
then combined this edge map with the incomplete image as the
input of the second stage to perform the inpainting task. Due to
the limited structural guidance of edge images, Ren et al. [22]
employed images processed with edge-preserving smoothing
as the representation of structure, and then modeled the
inpainting task as the combination of structure reconstruction
and texture generation. Wu et al. [45] combined a local binary
pattern learning network and a generative inpainting network.
For these approaches, the network architectures of two stages
usually are very similar, and thus their receptive fields are
close (greater than or approximately equal to the input image
resolution). And they rarely focus on the impact of the size of
receptive field in the refinement network.

Our network also designed in a coarse-to-fine manner,
however, there exists two apparent differences compared to
previous two-stage frameworks: (1) We deeply analyze the
impact of the refinement networks with different receptive
fields on image inpainting (see Sec. III-A and IV-C), which is
unfortunately omitted by previous approaches. The existing

coarse-to-fine methods only focus on the encoder-decoder
generator with large receptive field by introducing the dilated
convolution or contextual attention. However, we highlight the
importance of network with small receptive filed for image
inpainting. And this point provides interesting observations
and insights for future studies. (2) The combination of local
refinement network (with small receptive field) and global
refinement network (with large receptive field) can handle
different inpainting scenarios, including local structures, lo-
cal texture details, large structures, and long-distance texture
patterns. This is a new design idea. In addition, the attention
computation in global refinement network (our third stage) is
more robust attributing to the better representation provided
by the local refinement network, compared to the previous
two-stage methods that compute the contextual attention in
the second stage with coarse results.

Progressive methods. Zhang et al. [25] divided the image
inpainting process into four different phases, and used an
LSTM (long short-term memory) architecture [46] to control
the information flow of the progressive process. However,
they cannot handle irregular holes commonly appeared in
real-world applications. To address this limitation, Guo et
al. [26] proposed full-resolution residual networks with several
dilation modules. Li et al. [27] progressively reconstructed the
visual structure to entangle the visual feature reconstruction for
image inpainting. Different from existing progressive methods,
Li et al. [28] followed a progressive framework in feature
space and devised a recurrent feature reasoning network with
consistent attention. Zeng et al. [29] proposed a confidence-
based iterative inpainting method. Their network is similar
to [19], whereas the output of the second generator is the
inpainted image along with a confidence map, and this map is
used to guide the next iteration of the completion process. Due
to the iterative nature, these methods inevitably suffer from the
high computational costs.

III. PROPOSED METHOD

A. Observation and Motivation

For image inpainting, we observe that many existing works
often follow the common design concept, where their networks
have very large receptive field, e.g., a U-Net like architecture
or using multiple dilation convolution layers. In this work,
however, we highlight that a network with small receptive field
is also important. To clearly illustrate and analyze the impact
of networks with different receptive fields and motivate our
work, we train three different networks following a coarse-
to-fine framework: (1) a U-Net network with large receptive
field (greater than the input image resolution), denoted as
“C”; (2) a U-Net network adding a shallow network with
small receptive field (approximately a quarter of the input
resolution), denoted as “C+F S”; (3) a U-Net network adding
another U-Net network with large receptive field (greater
than the input image resolution), denoted as “C+F L”. The
corresponding inpainting results on three different datasets are
shown in Fig. 2.

Comparing “C+F S” and “C+F L” of the first and second
rows, we observe that “F S” can better repair the local
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Fig. 2. The inpainting performance of networks with different receptive fields.

structure (the nose and curls) and the local texture details (the
flower heart), where the missing regions are mainly related
to the surrounding local regions. On the other hand, when
comparing “C+F S” and “C+F L” of third and fourth rows,
we can find that the long-distance texture and large structure
are better inpainted by “F L”. The grass in the lower right
corner is almost missing, and the network needs to access the
remaining information on the left to infer; the inpainting of
right window needs to perceive the global information, i.e., the
layout and texture of all windows. In summary, network with
small receptive field is more efficient for repairing the local
structures and textures, while network with large receptive
field is more useful for inpainting the long-distance details
and large structures. Inspired by the above observation and
analysis, in this paper, we propose a three-stage network
for image inpainting to combine the networks with different
receptive fields, considering the complexity of missing regions.
Our network has the local and global refinement sub-networks,
therefore, it is called LGNet, as shown in Fig. 3. We describe
our network architecture and the corresponding loss functions
in the following.

B. Coarse Inpainting Network

Our coarse inpainting network (NetC) adopts an encoder-
decoder architecture with the skip connection. This network
consists of eight downsampling and upsampling operations.
The long skip connections are applied to propagate the in-
formation from the encoder to the decoder to recover the
information lost during downsampling. In the end of encoder,
the receptive filed is already 766× 766, which is much larger
than the input image resolution (256 × 256). Large receptive
field is beneficial to the completion of the whole structure. As

input, the network accepts an input image Iin and a binary
mask M describing the missing regions (where 0 means the
valid pixel and 1 means the missing pixel). The output of our
coarse inpainting network NetC is an inpainted image ICout.
To reduce the blur effect and enhance the realism of inpainted
results, we also apply a patch-based discriminator with spectral
normalization [48]. This discriminator takes the ground-truth
image and inpainted image as input, and outputs a 2D feature
map of shape R32×32. Each element in this feature map is
discriminated as real or fake.

The training objective of NetC consists of a pixel-wise
reconstruction loss and an adversarial loss. In our work, we
use the weighted L1 loss for the pixel-wise reconstruction,

LC
valid =

1

sum(1−M)
||(ICout − Igt)� (1−M)||1,

LC
hole =

1

sum(M)
||(ICout − Igt)�M||1,

(1)

where Igt is the ground-truth image, � is the element-wise
product operation, and sum(M) is the number of non-zero
elements in M. Then the pixel-wise reconstruction loss is
formulated as:

LC
r = LC

valid + λh · LC
hole, (2)

where λh is a balancing factor.
For GAN loss, we use the least square loss [49], the

corresponding loss functions for the coarse inpainting network
and the discriminator are defined as:

ICmer = Iin � (1−M) + ICout �M, (3)

LC
G = EImer∼pImer (Imer)

[
(D(ICmer)− 1)2

]
, (4)

LD =
1

2
EI∼pdata(I)

[
(D(Igt)− 1)2

]
+
1

2
EImer∼pImer (Imer)

[
(D(ICmer))

2
]
,

(5)

where ICmer is the merged image.
To this end, the total loss for NetC is LC = LC

valid + λh ·
LC
hole + λg · LC

G, and we set λh = 6 and λg = 0.1 in all
experiments.

C. Local Refinement Network

For the local refinement, we design a shallow deep network.
The local refinement network (NetL) includes two downsam-
pling operations, four residual blocks, and two upsampling
operations (see middle row of Fig. 3). Due to the shallow
nature, this network has small receptive field (i.e., 109×109 for
each output neuron), and then processes the local region of the
above coarse inpainted result in the sliding window manner.
Based on this design, some missing regions, e.g., the local
structures and textures, can be appropriately repaired using
the surrounding local information, and this repair process has
no influence from distant and failed filling contents. We have
also tested to use more residual blocks, which can gradually



1057-7149 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2022.3152624, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, 2022 5

…

…

Real/Fake

ConvAttention ResBlock

Skip connection Merged image

Fig. 3. The network architecture of our proposed LGNet. The purple block in local refinement network (NetL) represents a two-layer residual block [47].
Three green blocks in global refinement network (NetG) represent the attention modules, where the resolution is 16×16, 32×32, and 64×64, respectively.
In our framework, the output of each stage (i.e., ICout or ILout) is first merged with original incomplete image (Iin) and then concatenated with binary mask
(M) as the input of the next stage. Gray dotted line represents the merged image (i.e., ICmer or ILmer), which is obtained by using the valid (undamaged)
regions in original incomplete image (Iin) replaces the corresponding regions of sub-network’s output. Please refer to Eqn.(3) for the detailed formula.

increase the receptive field, however, the inpainted results only
have negligible improvements.

The first item of training objective of NetL is the weighted
reconstruction loss LL

r , which is the same as Eqn.(2) except
for replacing ICout with ILout in Eqn.(1). Following [14], the
total variation (TV) loss is used as the smoothing penalty. Its
formulation is:

LL
tv = ||ILmer(i, j + 1)− ILmer(i, j)||1

+||ILmer(i+ 1, j)− ILmer(i, j)||1.
(6)

Here, the computation process of ILmer is the same as that of
ICmer, i.e., Eqn.(3).

Similar to many previous works [14], [16], [17], [28], the
perceptual loss [50] and style loss [51] defined on the VGG-
16 [52] (pre-trained on ImageNet [53]) are also applied to
better recover the structural and textual information. Different
from the above pixel-wise reconstruction loss and TV loss,
which are conducted in the pixel space, these two losses are
computed in the feature space. The perceptual loss can be
formulated as:

LL
per =

∑
i

||Fi(I
L
out)−Fi(Igt)||1 + ||Fi(I

L
mer)−Fi(Igt)||1,

(7)
where Fi means the feature map of i-th layer in pre-trained
VGG-16 network (i ∈ {5, 10, 17}).

Similarly, the style loss is defined as:

LL
sty =

∑
i

||Gi(ILout)− Gi(Igt)||1 + ||Gi(ILmer)− Gi(Igt)||1,

(8)

where Gi(·) = Fi(·)Fi(·)T is the Gram matrix [51].
To summarize, the objective for local refinement network

is:

LL = LL
valid+λh ·LL

hole+λtv ·LL
tv+λper ·LL

per+λsty ·LL
sty.
(9)

For image inpainting, [14] is a pioneer work combining
the weighted reconstruction loss, perceptual loss, style loss,
and TV loss to train the inpainting network. In [14], the
corresponding loss weights are chosen by performing a hyper-
parameter search on validation images, and the similar weight
settings are also adopted in the following works [17], [28],
[44]. In our experiments, we also found that losses with these
weights in [14] have relatively balanced order of magnitude,
therefore, we simply adopt the weight setting [14]. Specifi-
cally, λh = 6, λtv = 0.1, λper = 0.05, and λsty = 120.

D. Attention-based Global Refinement Network

After the local refinement process, some visual artifacts
are appropriately eliminated with the guidance of surrounding
local regions. However, some missing regions (e.g., the large
structures or long-distance detail patterns) could be better
refined when catching information from relatively large sur-
rounding region. For this purpose, we introduce an attention-
based global refinement network to enlarge the extent of
captured information for a neuron through two ways, i.e.,
large receptive field and attention scheme. Because our coarse
inpainting network already has enough receptive field covering
the whole image, we simply utilize the network architecture of
NetC and add three attention modules in the front of decoder
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to obtain our attention-based global refinement network NetG
(see three green blocks in the bottom row of Fig. 3).

Local refinement network can provide relatively correct
completion result. Therefore, the attention computation in
the global refinement network tends to be more stable and
robust. Attention scheme has been extensively used in existing
works [19], [20], [28] to model the correlations between con-
textual information and the missing regions, e.g., the symmetry
and repeated patterns. In this work, we use the simple self-
attention method [19], [28], and more advanced attention
method can also be used in our framework. This is not the
main focus of our paper. Given a feature map F ∈ RC×HW ,
the affinity si,j ∈ RHW×HW of Fi and Fj is calculated by:

si,j =
exp(ŝi,j)∑
k exp(ŝi,k)

, ŝi,j =<
Fi

||Fi||
,
Fj

||Fj ||
> . (10)

Then, the weighted average version of F is F̃ = F ∗ S ∈
RC×HW via the matrix multiplication. Finally, we concatenate
F and F̃ , and apply a 1 × 1 convolutional layer to preserve
the original channel number of F .

The training objective LG of NetG is similar with LL

of NetL, only replacing ILout with IGout in the corresponding
locations of LL.

To this end, our proposed inpainting network LGNet is
trained in an “end-to-end” manner, and the final training
loss is the summation of losses of three sub-networks and
a discriminator, i.e., LC + LL + LG + LD.

IV. EXPERIMENTS

In this section, we first explain our experimental settings,
the datasets, competing methods, and implementation details.
Then, we evaluate and analyze our methods via comparison
experiments and ablation studies. We finally show several real-
world applications.

A. Experimental Settings

Datasets. We conduct experiments on three public datasets,
which are commonly used to evaluate image inpainting tasks.

• CelebA-HQ dataset [34]: The high-quality version of the
CelebA [54] consists of 30,000 face images. We randomly
select 27,000 for training and the remaining 3,000 for
testing.

• Places2 dataset [35]: A large-scale scene recognition
dataset. We select 20 categories to construct the inpaint-
ing dataset. Specifically, 2,000 images are randomly se-
lected for each category from the training set of Places2,
in total, the training set includes 40,000 images. All
images in the test set of these 20 categories (in total,
2,000 images) are used as our test set.

• Paris StreetView dataset [36]: This dataset consists of
street-level imagery. Following the original setting, we
use 14,900 images as the training set and 100 images as
the test set.

To train the networks, we construct the irregular masks on
the basis of QD-IMD (quick draw irregular mask dataset) [55]
with several simple operations like [18]. Following the existing
methods, we use the irregular mask data shared by Liu et

TABLE I
QUANTITATIVE COMPARISONS OF OUR METHOD WITH FIVE ADVANCED

INPAINTING METHODS ON CELEBA-HQ DATASET. ‡ HIGHER IS BETTER. †
LOWER IS BETTER. THE BEST TWO SCORES ARE INDICATED BY RED AND

BLUE FONTS, RESPECTIVELY.

Masks 1-10% 10-20% 20-30% 30-40% 40-50% 50-60%

` 1
(%

)
†

PEN 0.80 2.15 3.88 5.83 8.02 11.77
GConv 0.65 1.81 3.41 5.33 7.53 12.05

MEDFE 1.02 2.15 3.68 5.51 7.65 11.67
RFR 1.59 2.47 3.58 4.90 6.44 9.47

MADF 0.47 1.30 2.40 3.72 5.26 8.43
Ours 0.46 1.28 2.38 3.72 5.27 8.38

PS
N

R
‡

PEN 35.34 29.76 26.79 24.70 23.06 20.85
GConv 37.14 31.02 27.57 25.03 23.10 20.22

MEDFE 36.13 30.97 27.75 25.36 23.47 20.85
RFR 36.39 31.87 29.07 26.87 25.09 22.51

MADF 39.68 33.77 30.42 27.95 25.99 23.07
Ours 40.04 33.99 30.54 27.99 26.01 23.12

SS
IM
‡

PEN 0.988 0.965 0.933 0.894 0.849 0.764
GConv 0.991 0.971 0.941 0.902 0.856 0.750

MEDFE 0.990 0.971 0.943 0.908 0.865 0.775
RFR 0.991 0.976 0.957 0.932 0.902 0.834

MADF 0.995 0.984 0.967 0.945 0.917 0.848
Ours 0.995 0.985 0.968 0.945 0.917 0.849

FI
D
†

PEN 1.41 4.19 8.38 12.68 18.73 23.38
GConv 0.78 2.05 3.93 5.86 8.64 12.75

MEDFE 0.84 2.06 3.71 5.22 7.12 10.07
RFR 0.86 1.68 2.67 3.77 5.21 7.60

MADF 0.52 1.55 3.28 5.43 8.35 13.54
Ours 0.39 1.06 2.08 3.16 4.61 7.07

L
PI

PS
†

PEN 0.020 0.053 0.092 0.134 0.180 0.240
GConv 0.012 0.034 0.061 0.091 0.125 0.181

MEDFE 0.014 0.032 0.055 0.080 0.101 0.156
RFR 0.015 0.028 0.042 0.060 0.081 0.118

MADF 0.009 0.025 0.048 0.077 0.109 0.168
Ours 0.006 0.017 0.031 0.048 0.069 0.108

al. [14] as the testing masks to evaluate the trained models.
The irregular mask data contains 6 categories with different
hole ratios, i.e., (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], · · · , (0.5, 0.6].
Each category has 2,000 masks. In [14], these masks are gen-
erated via random dilation, rotation, and cropping from the raw
masks obtained by occlusion/dis-occlusion mask estimation
method [56] between two consecutive frames of videos.

Comparison methods. In this work, we compare our
method with five state-of-the-art inpainting methods, which
are summarized as follows:

• PEN [15]: A pyramid-context encoder network to fill
the holes by progressively learning region affinity with
attention.

• GConv [20]: A coarse-to-fine generative network, which
is an enhanced version of their previous work [19] by
introducing the gated convolution.

• MEDFE [17]: A mutual encoder-decoder CNN with
feature equalizations for joint recovery of structure and
texture.

• RFR [28]: A progressive inpainting method in the feature
space with recurrent feature reasoning and knowledge
consistent attention.

• MADF [44]: A U-shaped framework with mask-aware
dynamic filtering for image inpainting with a point-wise
normalization.

Implementation details. Our LGNet is implemented with
PyTorch 1.3.1. As GPU we use a TITAN RTX from NVIDIA®.
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TABLE II
QUANTITATIVE COMPARISONS OF OUR METHOD WITH FIVE ADVANCED
INPAINTING METHODS ON PLACES2 DATASET. ‡ HIGHER IS BETTER. †

LOWER IS BETTER. THE BEST TWO SCORES ARE INDICATED BY RED AND
BLUE FONTS, RESPECTIVELY.

Masks 1-10% 10-20% 20-30% 30-40% 40-50% 50-60%

` 1
(%

)
†

PEN 1.10 2.94 5.18 7.54 10.16 13.76
GConv 1.16 3.03 5.30 7.66 10.28 14.24

MEDFE 1.22 2.77 4.84 7.12 9.76 13.93
RFR 0.83 2.20 3.93 5.83 7.96 11.37

MADF 0.80 2.18 3.96 5.91 8.10 11.68
Ours 0.68 1.89 3.51 5.33 7.41 10.86

PS
N

R
‡

PEN 33.42 27.90 25.09 23.21 21.74 20.07
GConv 32.86 27.42 24.65 22.81 21.34 19.53

MEDFE 34.08 29.05 25.92 23.78 22.07 19.93
RFR 35.74 30.24 27.24 25.13 23.48 21.33

MADF 36.17 30.37 27.17 25.00 23.31 21.10
Ours 37.62 31.61 28.18 25.84 24.05 21.69

SS
IM
‡

PEN 0.975 0.927 0.867 0.801 0.727 0.619
GConv 0.968 0.917 0.856 0.792 0.722 0.610

MEDFE 0.978 0.941 0.888 0.825 0.752 0.630
RFR 0.983 0.952 0.911 0.862 0.805 0.699

MADF 0.984 0.953 0.910 0.859 0.800 0.690
Ours 0.988 0.963 0.925 0.878 0.823 0.714

FI
D
†

PEN 4.60 11.65 20.78 31.12 45.72 60.43
GConv 5.17 11.70 18.53 25.76 34.60 42.29

MEDFE 3.59 8.76 15.12 22.15 30.43 40.72
RFR 2.62 5.99 9.47 12.90 16.62 22.13

MADF 2.15 5.58 9.20 13.08 17.36 24.42
Ours 1.97 5.25 8.90 13.02 17.60 25.99

L
PI

PS
†

PEN 0.035 0.093 0.160 0.226 0.295 0.365
GConv 0.037 0.086 0.134 0.180 0.229 0.298

MEDFE 0.028 0.063 0.105 0.150 0.201 0.268
RFR 0.021 0.047 0.074 0.106 0.142 0.201

MADF 0.014 0.038 0.068 0.102 0.141 0.209
Ours 0.014 0.035 0.064 0.096 0.132 0.198

The Adam optimizer [57] with a minibatch size of 4 is used
to train our network, where β1 = 0.5 and β2 = 0.999. For the
learning rate schedule, we set its initial value as 0.0002 for
the first 100 epochs and linearly decay it to zero in the next
100 epochs. In our experiments, all the images and masks are
of size of 256× 256.

B. Comparisons with State-of-the-art Methods

We quantitatively and qualitatively compare our method
with five representative state-of-the-art image inpainting meth-
ods: PEN [15], GConv [20], MEDFE [17], RFR [28], and
MADF [44]. We also analyze and compare the computational
complexity of these methods.

Quantitative comparisons. For the evaluation metrics, we
adopt several common metrics in the image inpainting task: `1
error, PSNR (peak signal-to-noise ratio), SSIM (the structural
similarity index) [58], FID (Fréchet inception distance) [59],
and LPIPS (learned perceptual image patch similarity) [60].
The first three metrics are based on the low-level pixel
values, while the last two metrics are related to the high-level
visual perception. For LPIPS, we use the latest version (i.e.,
V0.1) [61]. From the Table I-III, it is obvious that our proposed
method has the best performance among all the inpainting
methods. Only for large mask on Places2 and Paris StreetView
dataset (hole ratio is larger than 30%), the FID of our method
is not the best, but competitive. A possible reason is that the
progressive strategy and corresponding multi-level attention

TABLE III
QUANTITATIVE COMPARISONS OF OUR METHOD WITH FIVE ADVANCED
INPAINTING METHODS ON PARIS STREETVIEW DATASET. ‡ HIGHER IS

BETTER. † LOWER IS BETTER. THE BEST TWO SCORES ARE INDICATED BY
RED AND BLUE FONTS, RESPECTIVELY.

Masks 1-10% 10-20% 20-30% 30-40% 40-50% 50-60%

` 1
(%

)
†

PEN 0.97 2.58 4.65 6.84 9.35 13.00
GConv 0.93 2.55 4.67 6.99 9.58 14.19

MEDFE 1.15 2.46 4.24 6.25 8.63 12.73
RFR 0.71 1.88 3.38 5.04 6.95 10.28

MADF 0.64 1.73 3.19 4.86 6.79 10.33
Ours 0.58 1.59 2.97 4.57 6.44 9.88

PS
N

R
‡

PEN 34.25 28.97 26.03 24.12 22.56 20.72
GConv 34.72 28.95 25.73 23.62 21.95 19.59

MEDFE 35.12 30.25 27.08 24.91 23.12 20.76
RFR 36.81 31.43 28.39 26.30 24.60 22.27

MADF 37.64 31.99 28.71 26.44 24.65 22.14
Ours 38.52 32.77 29.38 27.01 25.15 22.56

SS
IM
‡

PEN 0.979 0.939 0.884 0.821 0.745 0.624
GConv 0.980 0.940 0.885 0.825 0.757 0.629

MEDFE 0.984 0.954 0.909 0.854 0.787 0.660
RFR 0.987 0.962 0.928 0.886 0.836 0.733

MADF 0.989 0.966 0.933 0.892 0.841 0.732
Ours 0.991 0.971 0.940 0.900 0.851 0.742

FI
D
†

PEN 9.63 25.71 46.52 67.88 91.65 117.94
GConv 7.84 20.27 34.50 46.92 59.73 75.11

MEDFE 6.58 16.20 28.95 41.80 56.02 76.17
RFR 5.15 12.83 21.73 29.98 38.73 51.41

MADF 4.00 10.98 19.99 29.53 40.06 58.04
Ours 3.78 10.53 19.39 28.81 39.58 58.74

L
PI

PS
†

PEN 0.025 0.067 0.119 0.174 0.237 0.324
GConv 0.024 0.063 0.108 0.152 0.199 0.271

MEDFE 0.019 0.046 0.083 0.122 0.169 0.242
RFR 0.016 0.040 0.067 0.096 0.130 0.188

MADF 0.011 0.032 0.059 0.090 0.126 0.195
Ours 0.011 0.030 0.055 0.085 0.120 0.187

fusion in RFR are slightly better for large missing regions of
complex natural scene.

Qualitative comparisons. Fig. 4 illustrates the visual re-
sults of the six inpainting methods. Three groups (each group
includes three or four rows) separately correspond to CelebA-
HQ [34], Places2 [35], and Paris StreetView [36]. As shown in
Fig. 4, we observe that PEN and GConv have relatively poor
visual quality, which is also consistent with the quantitative
results (see Table I-III). Comparing face completion results,
our method can better repair the facial features, such as
eyes, nose, and mouth. Compared with GConv and RFR, our
attention computation in the global refinement network is more
robust and stable based on the relatively good completion
result of the local refinement network. In addition, compared
with existing inpainting methods, our method can better restore
the structures and details. For instance, the structure of the iron
grating (in the eighth row) and the windows (in the last row)
are successfully restored. Moreover, our method achieves a
clear and sharp boundary (the last image of the fifth row), and
recovers the flower texture (the last image of the seventh row)
as well.

Except for the irregular masks, we also compare the in-
painting performance of our method with other competitors on
the regular masks, e.g., square and circles. The corresponding
results are shown in Fig. 5. The hole size of square mask is
128 × 128. The radii of the four circles are 30, 30, 40, and
40, respectively. It can be seen that our method still has the
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Gt Input PEN GConv MEDFE RFR MADF Ours

Fig. 4. Qualitative comparisons of our method with PEN, GConv, MEDFE, RFR, and MADF on three datasets with irregular masks. From top to bottom:
CelebA-HQ, Places2, and Paris StreetView, respectively. These irregular masks are shared by [14], and we illustrate the inpainted results with different masks
just for diverse comparisons like other existing inpainting methods [20], [28], [44]. [Best view with zoom-in.]
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Gt Input PEN GConv MEDFE RFR MADF Ours

Fig. 5. Qualitative comparisons of our method with PEN, GConv, MEDFE, RFR, and MADF on three datasets with regular masks. From top to bottom:
CelebA-HQ, Places2, and Paris StreetView, respectively. [Best view with zoom-in.]
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Fig. 6. The statistical results of user study. The value at the top of the bar
indicates the percentage of being selected as the more natural one.

superior performance. In the first row, our method recovers
the more realistic face; In the fourth row, our network restores
more natural structure and details of the scene.

User study. The evaluation metrics are not strictly consis-
tent with the human perception. To further compare the visual
quality of our method with other five advanced image inpaint-
ing methods, we also conduct a user study. We randomly select
16 inpainted images from each of three datasets (in total 48
images). Then, we invite 27 volunteers for choosing the more
natural one from two images generated by different methods
without showing the mask and ground truth image. In the end,
we collect 1,296 votes. The corresponding statistical results are
shown in Fig. 6. We can find that our method has the highest
probability of being selected.

Computational complexity analysis. In this part, we
evaluate the computational complexity of LGNet and select
FLOPs, the number of parameters, and inference time (only
on CPU and GPU) as statistics. Inference time (Infer. time)
is the time of a forward pass of networks. We count the
inference time only on the CPU (Intel® Xeon® Processor E5-
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Input C C+L C+G_att C+G+G_att C+L+G C+L+G_att

Fig. 7. Qualitative comparisons of our network LGNet with its different variants. The meaning of symbols is the same as in Table VI. [Best view with
zoom-in.]

TABLE IV
MODEL COMPUTATIONAL COMPLEXITY STATISTICS.

Model FLOPs #Parameter Infer. time (CPU) Infer. time (GPU)
PEN [15] 48.07 G 10.23 M 418.16 ms 39.78 ms

GConv [20] 55.57 G 4.05 M 361.92 ms 13.98 ms
MEDFE [17] 137.93 G 130.32 M 946.82 ms 113.91 ms

RFR [28] 206.11 G 30.59 M 910.33 ms 28.95 ms
MADF [44] 51.77 G 85.14 M 925.65 ms 15.59 ms

LGNet 69.62 G 115.00 M 589.82 ms 13.59 ms
LGNet share 69.62 G 60.58 M 589.82 ms 13.59 ms
LGNet light 53.73 G 67.10 M 515.28 ms 12.66 ms

2690 v4) and the GPU (NVIDIA® TITAN RTX), respectively.
The corresponding results are reported in Table IV. Because
our LGNet adopts a coarse-to-fine strategy, the number of
parameters of our LGNet are relatively larger. However, the
FLOPs of LGNet is comparable to other methods and thus
LGNet has competitive inference time on CPU, especially
compared to RFR and MADF that have better inpainting
performance among the existing methods. Importantly, LGNet
has the fastest inference time on GPU. The reason is that
our network only has simple convolutional operation and
self-attention operation (essentially the matrix multiplication),
which are GPU-friendly.

Furthermore, we evaluate two simplified versions of our
LGNet: (1) LGNet share is a weight sharing version of
LGNet, where all the weights of NetC are the same as NetG
since they have almost same architectures. (2) LGNet light is
a light version of LGNet, where we simply change the base

TABLE V
NUMERICAL RESULTS OF LGNET, LGNET LIGHT, AND LGNET SHARE

ON PARIS STREETVIEW DATASET. ‡ HIGHER IS BETTER. † LOWER IS
BETTER.

Masks 1-10% 10-20% 20-30% 30-40% 40-50% 50-60%

` 1
(%

)
† LGNet 0.58 1.59 2.97 4.57 6.44 9.88

LGNet light 0.57 1.57 2.95 4.54 6.41 9.88
LGNet share 0.59 1.62 3.02 4.66 6.59 10.26

PS
N

R
‡ LGNet 38.52 32.77 29.38 27.01 25.15 22.56

LGNet light 38.59 32.81 29.38 26.99 25.11 22.52
LGNet share 38.30 32.54 29.16 26.77 24.88 22.19

SS
IM
‡ LGNet 0.991 0.971 0.940 0.900 0.851 0.742

LGNet light 0.991 0.971 0.940 0.900 0.850 0.741
LGNet share 0.990 0.970 0.938 0.896 0.843 0.725

FI
D
† LGNet 3.78 10.53 19.39 28.81 39.58 58.74

LGNet light 3.83 10.50 19.44 28.80 39.84 59.78
LGNet share 3.90 11.01 20.54 30.93 42.59 64.44

L
PI

PS
† LGNet 0.011 0.030 0.055 0.085 0.120 0.187

LGNet light 0.011 0.030 0.056 0.086 0.121 0.189
LGNet share 0.011 0.031 0.058 0.090 0.127 0.200

channel of NetC and NetG from 64 to 48. In NetC and
NetG, the number of channel of feature maps doubles from
a base number of 64, i.e., 64, 128, 256, etc. LGNet share
can significantly decrease the number of parameters of LGNet
(from 115.00 M to 60.58 M). Because the inference process
of LGNet share and LGNet is same, i.e., the sequence is
NetC , NetL, and NetG, “FLOPs” and “Infer. time (CPU,
GPU)” are also same. For LGNet light, “#Parameter” and
“FLOPs” of NetC and NetG both decline due to the decrease
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TABLE VI
THE FID COMPARISONS OF SIX DIFFERENT NETWORK ARCHITECTURES
ON THREE DATASETS. “C” STANDS FOR COARSE INPAINTING NETWORK;

“L” STANDS FOR LOCAL REFINEMENT NETWORK; “G” STANDS FOR
GLOBAL REFINEMENT NETWORK; “G ATT” STANDS FOR

ATTENTION-BASED GLOBAL REFINEMENT NETWORK. LOWER IS BETTER.

Masks C C+L C+G att C+G+G att C+L+G C+L+G att

C
el

eb
A

-H
Q

1-10% 0.67 0.40 0.46 0.44 0.40 0.39
10-20% 1.88 1.12 1.23 1.16 1.08 1.06
20-30% 3.82 2.27 2.38 2.29 2.12 2.08
30-40% 6.10 3.53 3.55 3.46 3.24 3.16
40-50% 9.37 5.20 5.26 4.97 4.71 4.61
50-60% 15.39 8.04 7.90 7.61 7.35 7.07

Pl
ac

es
2

1-10% 2.96 2.03 2.29 2.23 1.99 1.97
10-20% 8.58 5.51 6.02 5.78 5.35 5.25
20-30% 16.07 9.39 10.19 9.79 9.08 8.90
30-40% 25.46 13.79 14.86 14.03 13.40 13.02
40-50% 37.32 18.69 20.37 18.93 18.10 17.60
50-60% 54.67 27.21 29.76 27.33 26.68 25.99

Pa
ri

s
St

re
et

V
ie

w 1-10% 5.68 3.99 4.40 4.24 3.88 3.78
10-20% 15.83 11.13 11.79 11.48 10.65 10.53
20-30% 30.33 20.69 21.31 20.67 19.87 19.39
30-40% 46.64 31.16 31.44 30.55 29.32 28.81
40-50% 64.79 42.68 42.97 41.21 40.07 39.58
50-60% 93.75 63.19 61.07 59.20 60.01 58.74

of channel number of all their feature maps . Therefore,
compared to LGNet, “FLOPs”, “#Parameter”, and “Infer. time
(CPU, GPU)” of LGNet light are smaller. In addition, Ta-
ble V reports the quantitative results of LGNet, LGNet light,
and LGNet share on Paris StreetView dataset. The inpaint-
ing performance of LGNet light and LGNet are very close.
LGNet share is slightly inferior to LGNet and the reason is
that the input distributions are different for NetC (incomplete
images with missing regions) and NetG (complete images
with artifacts). In summarize, LGNet light is a better way to
decrease the computational complexity for our framework.

C. Ablation Studies

Network design. We validate and evaluate our network
design by comparing different variants of LGNet. The corre-
sponding numerical results are reported in Table VI and visual
comparisons are shown in Fig. 7. Comparing the columns of
“C”, “C+L”, “C+L+G”, and “C+L+G att” in Table VI, we
observe that the inpainting performance is getting better. This
indicates the effectiveness of our proposed local refinement
network and attention-based global refinement network. The
FID value of column “C+L+G att” is lower than that of
column “C+G+G att”, and this phenomenon is also consistent
with the case of “C+L” and “C+G att” (only except for 50-
60% on CelebA-HQ and Paris StreetView). These results sup-
port our network design: on the basis of the coarse inpainted
results, the shallow deep model with small receptive field
(local refinement network) works well, and the cascade of
local refinement network and attention-based global refinement
network is superior to the “brute-force” concatenation of two
deep models with large receptive field. The reason is that
networks with different receptive fields can handle different
kinds of visual artifacts.

Next, we analyze and compare the visual results of different
networks in Fig. 7. The results of “C” have roughly complete

Input NetC NetL NetG
Fig. 8. The outputs of our three sub-networks: coarse inpainting network
(NetC ), local refinement network (NetL), and attention-based global refine-
ment network (NetG).

structures and the obvious blur. The introduce of local refine-
ment network can enrich the local details, e.g., the regions
of blue boxes in the second and third rows. “C+G att”can
repair some regions according to the global information, such
as the left eye in the first row and lawn in the blue box of the
second row, meanwhile, “C+G+G att” can further eliminate
some visual artifacts. “C+L+G att” combines the completion
capability of “L” and “G att” to obtain more natural and
realistic inpainted results (see last column).

Moreover, we analyze our LGNet by presenting and com-
paring the outputs of three sub-networks as shown in Fig. 8.
It is obvious that the visual quality of inpainted images are
getting better (2-4 columns). Take the first row as an example,
NetC provides an initial completion result, NetL removes
some local blur in the face using the local information, and
NetG finally recovers a plausible eye using global information
with attention. The remaining samples have similar process.

Loss weights. [14] is a pioneer inpainting work, which com-
bines the weighted reconstruction loss, perceptual loss, style
loss, and TV loss as the total training objective. The weights
of these losses are similar for the following works [17],
[28], [44]. In this work, we mainly focus on the network
design according to the receptive field. Therefore, we simply
adopt the same loss weights as [14], [44]. To further evaluate
the inpainting performance of different weight settings, we
conduct the ablation experiments on Paris StreetView dataset,
and the corresponding results are reported in Table VII. All
evaluation metrics go worse when setting the Lvalid and Lhole

with the same weight, i.e., λh = 1. Pixels in hole regions are
unknown, and thus are more difficult to recover than valid
regions. Therefore, the larger weight for λh is needed. For



1057-7149 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2022.3152624, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, 2022 12

TABLE VII
QUANTITATIVE RESULTS OF OUR METHOD WITH DIFFERENT LOSS

WEIGHTS ON PARIS STREETVIEW DATASET. ‡ HIGHER IS BETTER. †
LOWER IS BETTER. “λh” REPRESENTS λh = 1; “λper” REPRESENTS

λper = 0.1; AND “λsty” REPRESENTS λsty = 180.

Masks 1-10% 10-20% 20-30% 30-40% 40-50% 50-60%

` 1
(%

)
† λh 0.63 1.73 3.24 5.00 7.05 10.87

λper 0.57 1.57 2.94 4.53 6.40 9.85
λsty 0.59 1.62 3.02 4.64 6.53 10.03

λper, λsty 0.58 1.59 2.98 4.60 6.49 10.02
Ours 0.58 1.59 2.97 4.57 6.44 9.88

PS
N

R
‡ λh 37.83 32.04 28.61 26.22 24.36 21.76

λper 38.59 32.80 29.39 27.00 25.13 22.53
λsty 38.39 32.64 29.25 26.87 25.02 22.43

λper, λsty 38.49 32.69 29.27 26.87 25.00 22.39
Ours 38.52 32.77 29.38 27.01 25.15 22.56

SS
IM
‡

λh 0.989 0.966 0.931 0.886 0.830 0.709
λper 0.991 0.971 0.940 0.901 0.851 0.742
λsty 0.991 0.970 0.939 0.898 0.847 0.737

λper, λsty 0.991 0.970 0.939 0.898 0.847 0.736
Ours 0.991 0.971 0.940 0.900 0.851 0.742

FI
D
†

λh 3.97 11.10 20.28 30.45 41.81 61.53
λper 3.78 10.46 19.26 28.66 39.30 58.80
λsty 3.82 10.52 19.42 29.18 39.94 59.66

λper, λsty 3.77 10.46 19.45 28.83 39.44 58.33
Ours 3.78 10.53 19.39 28.81 39.58 58.74

L
PI

PS
† λh 0.011 0.030 0.056 0.088 0.124 0.193

λper 0.011 0.030 0.055 0.085 0.120 0.188
λsty 0.011 0.030 0.055 0.085 0.119 0.186

λper, λsty 0.010 0.029 0.054 0.084 0.119 0.186
Ours 0.011 0.030 0.055 0.085 0.120 0.187

the remaining settings (“λper”-“Ours” in Table VII), their
inpainting performance are very close.

D. Generality of Local and Global Refinement

Based on the observations about the impact of networks
with different receptive fields on image inpainting, we propose
an inpaiting framework with local and global refinement. It
is natural to directly insert our local and global refinement
network (LG) in the end of any existing networks, i.e.,
regarding the existing networks as the first stage, to further
improve their inpainting performance. In this subsection, we
conduct the experiments on PEN [15] and MEDFE [17].
The training strategy also adopts their original setting [15],
[17]. The corresponding numerical results are reported in
Table VIII. For all three datasets, we find that our local and
global refinement network can stably and consistently improve
the metrics of inpainting results (comparing the rows of “X”
and “X LG” in Table VIII). Furthermore, we also illustrate the
improvement of visual quality with LG, as shown in Fig. 9.
For example, the results of PEN have more natural texture
(the second row) and structural windows (the third row); the
results of MEDFE have realistic and symmetrical face (the
fourth row) and complete telegraph pole (the fifth row).

E. Real-World Applications

In this subsection, we apply our method to several real-
world applications, including object removal, text editing, and
logo removal.

Fig. 9. The first three rows: PEN without/with LG; The remaining three rows:
MEDFE without/with LG. Each group (one row) includes Gt, Input, original
PEN (or MEDFE), and PEN (or MEDFE) with LG, respectively.

Object removal. Image inpainting technique is often used
in image editing tools to removal unwanted objects. To eval-
uate the performance of our method on object removal, we
apply our trained models to remove objects from selected
real-world images, and the corresponding results are shown
in Fig. 10. The models are separately trained on CelebA-
HQ, Places2, and Paris StreetView. Our method can achieve
visually realistic results, successfully removing the objects
indicated by binary masks. In details, our method can recover
the mouth and eyes of human, preserve the original details for
the natural scene images, and preserve the consistent building
structures.

Text editing. For text editing task, text erasing and text
replacement are two common operations. The former can hide
the important information, and the latter can be used in text
translation. We conduct the experiments on the recent real-
world text erasing datasets [62], including 11,040 training
samples and 1,080 testing samples. Fig. 11 shows the examples
of text translation (the first row) and information hiding (the
second row). For text translation, the original text is erased
using our inpainting method, and then the translated content is
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TABLE VIII
QUANTITATIVE COMPARISONS OF EXISTING METHODS (“X”) AND THESE METHODS WITH OUR LG (“X LG”) ON THREE PUBLIC DATASETS. ‡ HIGHER

IS BETTER. † LOWER IS BETTER.

Dataset CelebA-HQ Places2 Paris StreetView
Masks 10%-20% 30%-40% 50%-60% 10%-20% 30%-40% 50%-60% 10%-20% 30%-40% 50%-60%

` 1
(%

)
† PEN 2.15 5.83 11.77 2.94 7.54 13.76 2.58 6.84 13.00

PEN LG 1.30 3.90 9.04 1.96 5.55 11.31 1.64 4.78 10.55
MEDFE 2.15 5.51 11.67 2.77 7.12 13.93 2.46 6.25 12.73

MEDFE LG 1.66 4.26 9.27 2.29 5.80 11.46 2.08 5.19 10.89

PS
N

R
‡ PEN 29.76 24.70 20.85 27.90 23.21 20.07 28.97 24.12 20.72

PEN LG 33.65 27.50 22.47 31.26 25.49 21.38 32.48 26.64 22.04
MEDFE 30.97 25.36 20.85 29.05 23.78 19.93 30.25 24.91 20.76

MEDFE LG 33.18 27.23 22.40 30.75 25.39 21.36 31.69 26.26 21.84

SS
IM
‡ PEN 0.965 0.894 0.764 0.927 0.801 0.619 0.939 0.821 0.624

PEN LG 0.983 0.941 0.833 0.961 0.872 0.703 0.969 0.894 0.724
MEDFE 0.971 0.908 0.775 0.941 0.825 0.630 0.954 0.854 0.660

MEDFE LG 0.982 0.937 0.831 0.957 0.869 0.701 0.965 0.887 0.716

FI
D
† PEN 4.19 12.68 23.38 11.65 31.12 60.43 25.71 67.88 117.94

PEN LG 1.16 3.62 8.65 5.70 14.54 29.45 11.70 33.25 70.65
MEDFE 2.06 5.22 10.07 8.76 22.15 40.72 16.20 41.80 76.17

MEDFE LG 1.30 3.82 8.30 6.27 15.15 29.63 13.11 34.15 67.60

L
PI

PS
† PEN 0.053 0.134 0.240 0.093 0.226 0.365 0.067 0.174 0.324

PEN LG 0.018 0.054 0.123 0.038 0.106 0.219 0.033 0.096 0.212
MEDFE 0.032 0.080 0.156 0.063 0.150 0.268 0.046 0.122 0.242

MEDFE LG 0.020 0.056 0.122 0.045 0.111 0.220 0.037 0.102 0.218

Fig. 10. Examples of object removal on different scenes.

putted on the image. Our method obtains the plausible results.
Logo removal. Automatic logo removal is prevalent in

the process of commercial advertising and product packaging
design. The core of this technique is to restore the reason-
able content in the original logo regions. Through several
representative examples (Fig. 12), we show that our method
can be used for logo removal application. In this work, we
use a public logo detection dataset, QMULOpenLogo [63].
We follow the original train/test splitting, where we train our
model on 15,975 images, and test on 8,331 images. We resize
all images so that the shorter edge of each resized image has
256 pixels. During training, we randomly crop image patch
of 256 × 256, and we crop center patch in the testing stage.
As shown in Fig. 12, our method can recover the reasonable
color transition (the first row), preserve the original structure
and shape (the second row), and fill the consistent content with

Fig. 11. Examples of text translation and information hiding.

background (the third row).

F. Failed Examples

Our method might not restore the correct semantic objects
when the specific objects are scarce in the training samples
(Fig. 13(left)) and the unmasked regions of object are very
small (Fig. 13(right)), especially for the very large missing
regions. Fig. 13 illustrates such two unsatisfied cases of our
method. Fig. 13(left) is predicted via the model trained on
Places2 dataset, which mainly contains natural scene and lacks
the training samples of cars. By contrast, when we train our
inpainting network on the CelebA-HQ dataset (only including
face images), the model works well for inpainting the face
image with very large missing regions. Fig. 13(right) cannot
restore humans because it is difficult to predict the correct
semantic with very small remaining regions of humans. For
this challenging scenario, a possible solution is to provide the
semantic prior or a reference image.
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Fig. 12. Examples of logo removal.

Fig. 13. Two failed examples of our method.

V. CONCLUSIONS AND FUTURE WORK

From the perspective of receptive field, we proposed a
three-stage generative network for image inpainting. A coarse
inpainting network with large receptive field is applied to
complete the whole structure and partial texture details. A
local refinement network with small receptive field is designed
to eliminate the visual artifacts strongly related to its local
region and prevent the negative effect from far and failed
filling contents. An attention-based global refinement network
with large receptive field is proposed to further improve the
visual quality of inpainted results using the global information
and the more stable attention computation. Extensive results
demonstrate the superiority of our proposed method.

In this work, our framework concatenates two sub-networks
with small and large receptive fields to handle different types
of missing regions and artifacts. Our study implies that it
is beneficial to introduce different receptive fields for image
inpainting task. In the future, we would like to improve our
network architecture by designing a sub-network with diverse
receptive fields or bring the local and global refinement as a
whole for more efficient storage and computation. In addition,
attention has been prevalent in many existing image inpainting
methods, however, the attention computation is sensitive to
the filled contents and has no appropriate supervision. We
would also like to design more accurate and robust attention
computation mechanism.
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