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Abstract Recent learning-based approaches show
promising performance improvement for the scene text
removal task but usually leave several remnants of text
and provide visually unpleasant results. In this work,
a novel end-to-end framework is proposed based on
accurate text stroke detection. Specifically, the text
removal problem is decoupled into text stroke detection
and stroke removal; we design separate networks
to solve these two subproblems, the latter being a
generative network. These two networks are combined
as a processing unit, which is cascaded to obtain our
final model for text removal.
demonstrate that the proposed method substantially
outperforms the state-of-the-art for locating and
erasing scene text. A new large-scale real-world dataset
with 12,120 images has been constructed and is being
made available to facilitate research, as current publicly

Experimental results

available datasets are mainly synthetic so cannot
properly measure the performance of different methods.

Keywords scene text removal; text stroke detection;
generative adversarial networks; cascaded
network design; real-world dataset

1 Introduction

Text is an important information carrier which often
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appears in various scenes. The problem of scene

text removal can be stated as follows: given an
image with a certain amount of text (as in Fig. 1(a)),
the goal is to remove the text in this image (see
Fig. 1(d)). This task has many applications in daily
life, for example in personal information protection
(e.g., hiding telephone numbers or a home address in
public photos) and in text translation (removing the
original text and inserting new translated results) [1].

Several approaches have been proposed to erase
graphical text (e.g., subtitles) from color images [2—
4]. In challenging cases of scene text removal, with
complex backgrounds and text in various fonts and
sizes, these methods often produce results with visual
artifacts. Inspired by the notable success of deep
learning in image transformation [5-7], recent works
have introduced deep-learning-based approaches to
solve this problem with promising results [8-12].
Learning-based methods can be classified into two
main categories, depending on whether a mask is
used. Methods without masking simply take the
given image as input and remove all text from it.
Such methods often leave noticeable remnants of
text or incorrectly distort non-text areas, and cannot
remove text locally. Other methods use a region mask,
i.e., a rectangular or polygonal mask approximately
indicating the text region (see Fig. 1(b)), as an
additional input to facilitate text removal.

A recent mask-based text removal network
(MTRNet) [10] achieved a noticeable improvement
over prior works for scene text removal by focusing
on text regions using an auxiliary binary mask. Its
pipeline is similar to that of general image inpainting
tasks [13, 14]. However, there is a key difference:
the pixel values of the original input image in the
text regions indicated by an auxiliary mask are
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(a) (b)

Fig. 1 Example results using our proposed scene text removal method:

TSDNet, and (d) final result.

known for text removal, whereas the corresponding
values are missing (or corrupted) for general image
inpainting. Generally, as the regions to be processed
(indicated by the mask) become larger, filling or
removing text becomes more difficult for not only
image inpainting but also text removal. In addition,
in the scene text removal problem, regions not covered
by text strokes do not need to be removed. The
mask used by MTRNet covers several unnecessary or
redundant regions (non-stroke areas), especially when
text strokes are scattered sparsely. A better result
could be achieved if the exact text strokes could be
extracted, allowing the original contents of the input
image to be preserved as much as possible.

In this paper, a novel end-to-end framework is
proposed based on a generative adversarial network
(GAN) to address this problem. The key idea of
our approach is first to extract the text strokes as
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(a) input image, (b) region mask, (c) text stroke mask obtained by our

accurately as possible and then improve the text
removal. These two processes can be further enhanced
via a simple cascade. Our idea is similar to the
very recent MTRNet++ [11], an extended version of
MTRNet [10]. However, two key differences exist
between our proposed method and MTRNet-++.
Firstly, our proposed method only uses the detected
stroke mask (the output of our text stroke detection
network) as the additional information (the region
mask is also taken as the input to the text removal
generative network), whereas MTRNet++ depends
on the exact predicted stroke mask in their so-called
fine-inpainting branch. However, determining an
exact stroke mask is difficult. Thus, the result
of MTRNet++ is more sensitive to errors in the
predicted stroke mask. Secondly, our proposed
method is conducted in a simple cascaded manner, so
our detected stroke mask can be further refined and
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used in the text removal generative network twice,

whereas MTRNet++ only uses the stroke mask once.

Therefore, our method is more efficient, as shown in

Section 4.

In addition, current public datasets for scene text
removal are mainly synthetic, which affects the
generalization ability of the trained models. To
facilitate this research and approximate the real-world
setting, we have constructed a new, high-quality,
large-scale dataset.

The main contributions of our work are as follows:
e a text stroke detection network (TSDNet), which

can effectively distinguish text strokes from non-
text areas,

e a text removal generative network,

e their combination to construct a processing unit,
which is cascaded to obtain our final network
which demonstrates superior performance,

e a weighted-patch-based discriminator (WD) to
pay more attention to text areas of input images,
making generating more realistic images easier
for the generator, and

e a high-quality real-world dataset for benchmark-
ing the scene text removal task and other related
tasks.

The remainder of this paper is organized as follows.
Section 2 reviews existing work. Section 3 provides
motivation and details the networks in our method.
Section 4 evaluates the performance of our method
and provides comparisons with existing methods.
Section 5 draws conclusions and discusses future work.

2 Related work

2.1 Scene text detection

Scene text detection is a fundamental step in
scene understanding and is widely studied in the
field of computer vision [15]. Deep learning has
considerably improved the performance of scene text
detection frameworks, surpassing traditional methods
by large margins. Shi et al. [16] decomposed text
into two locally detectable elements of segments
and links, which are simultaneously detected by
a fully convolutional network. TLiu et al. [17]
collected a curved text dataset called CTW1500
to facilitate curved text detection and proposed
a method integrating transverse and longitudinal
sequence connections. Chen et al. [18] proposed the

concept of a weighted text border and introduced
an attention module to boost detection performance.
To improve detection, multiscale pyramid input is
widely used but it requires much more computation.
He et al. [19] achieved a remarkable speedup via a novel
two-stage framework including a scale-based region
proposal network and a fully convolutional network.
CRAFT [20] effectively detected arbitrary text areas
by exploring each character and the affinities between
characters. In this work, this method is adopted as a
tool to measure the performance of scene text removal
(see Section 4.2).

2.2 Text/non-text image classification

Another relevant research area is text/non-text image
classification, which determines whether an image
block contains text. Zhang et al. [21] first proposed
an effective method for text image discrimination, by
combining maximally stable extremal regions [22],
convolutional neural networks (CNN), and bag
of words (BoW) [23]. Bai et al. [24] proposed
a multiscale spatial partition network to solve
this task efficiently by predicting all image blocks
simultaneously in a single forward propagation. Zhao
et al. [25] investigated this task from two perspectives
of speed and accuracy. They used a small, shallow
CNN for speed and applied knowledge distillation
to improve accuracy. Very recently, Gupta and
Jalal [26] combined a text detector, EAST [27],
and a classification subnetwork for text/non-text
image classification. Unlike these previous works, to
facilitate text removal, our method aims to capture
the exact positions of text strokes, at the pixel level,
instead of image blocks or patches with text.

2.3 Scene text removal

Existing approaches of scene text removal can be
classified into two major categories: traditional non-
learning methods and deep-learning-based methods.

Traditional approaches typically use color-
histograms or threshold-based methods to extract
text areas, and then propagate information from
non-text regions to text regions depending on pixel or
patch similarity [2-4]. These methods are suitable for
simple cases, with clean, well-focused text, but work
less well in complex scenarios, such as images with
perspective distortion and complicated backgrounds.

Recent learning-based approaches try to solve this
problem with the powerful learning capacity of deep
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neural networks. Nakamura et al. [8] first proposed
a scene text erasure method (ST Eraser) based on a
CNN and conducted text erasure patch by patch.
This patch-based processing fails to localize text
having a complex shape and inevitably damages the
consistency and continuity of the erased result. Zhang
et al. [9] designed an end-to-end trainable framework
(EnsNet) with a conditional GAN to remove text
from natural images. Unlike Ref. [8] which erases
text in an image patch by patch, EnsNet can erase
scene text on the entire image in an end-to-end
manner. These two works do not use masks and
need to localize and remove text simultaneously. Such
methods often suffer from inaccurate text localization
and incomplete text removal. To solve this problem,
Tursun et al. [10] developed MTRNet. An auxiliary
mask is used to provide information on where the text

is, enabling MTRNet to better focus on text removal.

The additional information provided by the mask is
the main reason why MTRNet outperforms previous
methods. MTRNet also supports partial or local text
removal by user mask control. Very recently, Tursun
et al. [11] proposed an extended version, MTRNet++,
which introduces a mask refinement branch to turn
coarse region masks into pixel-level masks. The
latter are used as input to a fine-inpainting branch
to provide additional text information. Based on
EnsNet [9], Liu et al. [12] introduced an additional
generator to construct a two-stage coarse-to-refine
network like Ref. [28]. Moreover, they collected a new
dataset, SCUT-EnsText, containing 3562 images. All
these existing approaches often leave several text

strokes unchanged or generate unpleasant results
because they do not appropriately and exactly pay
attention to the text strokes. Another shortcoming of
the current methods is that their training datasets are
mainly synthetic because the collection of real-world
datasets is difficult and time consuming.

3 Method

3.1 Network architecture

We combine a text stroke detection network with
a text removal generative network to construct a
processing unit. The final network is obtained by
cascading this unit and combining it with a weighted-
patch-based discriminator.

3.1.1

The proposed generator has two purposes, firstly to
detect text strokes in the input image accurately,
and secondly to inpaint the detected text strokes
with proper content. To achieve the first goal,
a text stroke detection network (TSDNet) is
constructed. For the second goal, a text removal
generative network (TRGNet) is proposed. The
whole generator is obtained by cascading the group
of TSDNet and TRGNet, as shown in Fig. 2. The
parameters in these four networks are not shared.
Technically, TSDNet and TRGNet employ a U-Net-
like architecture [29] because, compared to a simple
encoder—decoder framework, the U-Net architecture
with skip connections helps recover the structure and
texture details of unmasked areas from input images

Cascaded generator

Residual Block 128 | |

Gr

Fig. 2 Overall structure of the proposed generator, using cascaded text stroke detection and text removal generation. @ indicates concatenation of
image, region mask, and stroke mask. The convolutional kernel size of the first layer of Gr and G§; is 5 x 5, and the remaining kernel size is 3 x 3.
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as well as avoiding over-smoothing and undesired
artifacts.

The inputs to TSDNet (denoted Gp) are a text
image I and a binary mask M (indicating the text
regions). The output is a matrix M of the same
size as M ; it contains floats in [0, 1], larger values
indicating a higher confidence that the corresponding
position in image I is covered by a text stroke:

M, = Gp (I, M) 1)
The ground truth of text stroke distribution is a
binary mask M, in which 1 means the corresponding
Unlike
M which only specifies the approximate region of a

position in I is covered by a text stroke.

certain text element, M, is a pixel-level annotation
In practice, My is obtained by
binarizing the difference between the paired text
image I and text-free image Iy (more details are
given in Section 4.1), and this stroke annotation

of text strokes.

is only used in the training stage as supervisory
information to train TSDNet.

After obtaining stroke mask Mg, TRGNet GR is
then applied to erase text from input image I. Ggr
takes three items as input: text image I, binary mask
M, and the stroke mask My obtained from Gp; it
outputs text-erased image Ii:

I. = Gr(I, M, M,) (2)

A TSDNet followed by a TRGNet (top row in
Fig. 2) can already detect and erase text effectively,
but the resulting images (Ii.) sometimes contain
artifacts and slight remnants of text. We observe
that a simple cascade can eliminate such artifacts
and bring substantial visual improvement. Thus,
in our architecture, the second TSDNet G, takes
I, M, and M; as input, and outputs M. Then,
the second TRGNet G} takes Iio, M, and M/ as
input, and outputs the final text-erased result I7,. By
combining the previous outputs, G7, acquires a more
accurate text stroke distribution in an incremental
manner. Thus, Gi; can effectively reduce artifacts
and inconsistency.

Previous studies such as EnsNet and ST Eraser,
which simply take an image or patch as input and
try to erase text without prior information, showed
relatively limited performance. In this work, we use a
binary mask specifying the text region as additional
information to decrease the difficulty of detecting and
erasing text at the same time, and design a TSDNet
to provide more accurate instruction as to which

area should be removed. By doing so, text removal
is successfully decoupled into text stroke detection
and stroke removal, leading to a proposed framework
giving an effective solution to solve these decoupled
problems.

3.1.2  Weighted-patch-based discriminator

A patch-based discriminator (see Fig. 3) is useful to
concentrate effort on altered areas as text removal
only needs to change parts of the input image.
In this work, the discriminator proposed in SN-
PatchGAN [28, 30] is used to discriminate the
text-erased image patch by patch. The original
discriminator is further improved by attaching an
additional convolutional branch D, to discriminator
D to assign various weights to different patches
according to mask M. Dy, has the same architecture
as D, but each layer only has one channel, and weights
in the convolutional kernel are fixed to 1. By doing
so, the patches covered by more text will be given
more attention.

3.2 Training loss

We now present our loss functions for the generator
and discriminator. To verify that our proposed
method is valid, a relatively simple loss function is
used when training our network. For TSDNet Gp

and G, simple [y loss is used:
Lrsp = B[ [IM, — My |y + | M, — Myll1] (3)

where \; balances the [; losses of Gp and Gf,. Ay = 10
in all our experiments, because most text strokes have
been detected by Gp.

For the scene text removal task, our main goal is to
remove text and preserve non-text regions. Therefore,

1 1

Fig. 3 Architecture of our weighted-patch-based discriminator.

* denotes element-wise multiplication between two branches with
broadcasting. A 5 x 5 convolutional kernel is used.
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more attention is paid to masked areas (indicated by
M), especially the detected stroke areas (indicated by
M/ M). More precisely, the corresponding weight
matrices My, and M, for Ggr and G} are defined as
My =1 + AnM + \M, .
M, =1+ A\yM + \;M] 4
where 1 has all elements 1, and the same shape as
M. Then, the total loss for Gr and Gp is defined as

['TRG - E|:HIte O] Mw — dgt © Mw”l +

NI © M, — Iy © M| (5)

where ® is the element-wise product, and A, is a
balancing parameter. In all our experiments, we set
Am =5, As = 5, and A\, = 10.

For the objective function of patch-based GAN, the
hinge version of adversarial loss [31, 32] is used. The
corresponding loss functions for the generator and
discriminator are defined respectively as

& = —B[Dy(M) o D(I,)| (6)
2 = E[ReLU(1 - Day(M) © D(I))] +

E [ReLUu + Dy(M)® D(I{e))] (7)

where ® means element-wise product with broadcast-
ing in terms of depth.

In summary, the total loss for our cascaded
generator combines Egs. (3), (5), and (6):

Lg = Lrsp + L1rG + EE? (8)

We note that perceptual loss [5] and style loss [33]
provide no noticeable improvements for our task.
One reason is that scene text is usually located in a
relatively flat area. Total variation loss [34] has no
apparent effect on the erased result either, so it is not
used in our method.

4 Experimental results

To evaluate our proposed method quantitatively and
qualitatively, we compare it with recent state-of-the-
art text removal methods. An ablation study is also
conducted to evaluate different components of our
network.

4.1 Dataset

To train a deep model for text removal, paired
images with and without text are required. However,
obtaining such data for real-world scenes is difficult,
which is why synthetic datasets are mainly used

EN?V%%IGYQ&?S @ SPringer

in most existing approaches. Two public synthetic
datasets are available: the Oxford synthetic scene
text detection dataset [35] and the SCUT synthetic
text removal dataset [9]. These two datasets adopt
the same synthesis technology proposed by Ref. [35]
and share the same drawback: given a text-free
image as background, multiple images with text
are synthesized. For instance, the Oxford dataset
synthesized 800,000 images using only 8000 text-free
images, so 100 text images share each background
image, leading to insufficient background diversity.
Such repetition negatively affects the generalization
ability of models. Very recently, Liu et al [12].
collected a real-world dataset, SCUT-EnsText, but
it only has 3562 images, with text in two languages
(Chinese and English). Thus, we have constructed a
larger real-world dataset with multilingual text for
text removal.

To construct our dataset, 5070 images with
text were first collected from the ICDAR2017
MLT dataset [36], and 1970 images captured from
supermarkets and streets. These were then processed
to obtain corresponding text-free images, region
masks, and text stroke masks. The text from
the collected images was manually removed using
the inpainting tools in Photoshop to provide text-
free images as ground truth. Region masks were
annotated using the VGG Image Annotator tool [37].
To get the ground truth stroke masks, the difference
between paired images with and without text is
first computed and then turned into a binary image.
To enrich the diversity of our dataset, synthesis is
also used, and 4000 images with high realism were
manually selected. A total of 11,040 images was
obtained as the training set (Train.rw). Several
samples of our dataset are shown in Fig. 4. To
construct the testing set (Test_rw), 1080 further real-
world images were collected, and the above post
processing is applied to obtain text-free images, region
masks, and text stroke masks. Our collected real-
world dataset contains 12,120 images and has text in
multiple languages as reported in Table 1.

For the public synthetic dataset, we use the Oxford
dataset [35], which is much larger than the SCUT
dataset [9]. 75% of the Oxford dataset was randomly
selected as the training set (Train-ox), and 2000
images were randomly selected from the remainder as
testing set (Test_ox). For the SCUT-EnsText dataset,
the original split is followed as reported in Ref. [12].
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Fig. 4 Examples from our dataset. Left to right: images with text,

text-free images, region masks, and text stroke masks.

Table 1 Language statistics for our dataset; one image may contain
multiple languages

Latin Arabic
8604 765

Chinese Korean

3807 819 848 519

Japanese Bangla

4.2 Evaluation metrics

Performance is evaluated according to two different
criteria: Can the method completely remove text from
an image? Is the text area replaced with appropriate
content? An accurate text detector is often used
to assess the former; we use the state-of-the-art
detector CRAFT [20] and DetEval protocol [38] for

ot
in D3 2000
gummies

evaluation via recall, precision, and f-measure. For
the second criterion, general image inpainting metrics
are adopted: mean absolute error (MAE), peak signal-

to-noise ratio (PSNR), and structural similarity index
(SSIM).

4.3 Implementation details

Our network was implemented using TensorFlow 1.13
on an nVidia TITAN RTX GPU. Input images were
resized to 256 x 256. The Adam optimizer [39] was
used with a mini-batch size of 16 to train our network,
with 51 = 0.5 and 2 = 0.9. The initial learning rate
was set to 0.0001.

4.4 Dataset comparison

Figure 5 compares example results using the Oxford
synthetic dataset and our real-world dataset for
training, using two different networks (MTRNet and
our proposed network). FEach group of 3 images
shows the input image, result when using the Oxford
dataset got training, and result using our dataset for
training. In each case, using our dataset, the text
is better removed, especially for our network, with
no noticeable text remnants and better preservation
of the original image details, such as lighting effects.
This demonstrates that our dataset is more suitable
for training scene text removal networks, even though
the Oxford dataset has more images.

4.5 Comparison with the state-of-the-art
methods

In this subsection, our method is quantitatively and
qualitatively compared with recent state-of-the-art

text removal methods: ST Eraser [8], EnsNet [9],

Mounﬁm@ew

SOLD HERE

(a) (b) (c)

Fig. 5 Effects on generalization ability of using the Oxford dataset and our dataset for training. Above: results from MTRNet. Below: results
from our method. Each group of 3 images: (a) input image, (b) text removal result trained on the Oxford dataset, and (c) text removal result

trained on our dataset.
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MTRNet [10], MTRNet++ [11], and EraseNet [12].
The official implementation of EnsNet and EraseNet
is used, and ST Eraser, MTRNet, and MTRNet++
are reimplemented.

Table 2 quantitatively compares these six methods
on the Oxford dataset and our dataset. Our method
is superior to the other methods by a large margin for
all metrics. When training on Train_rw and testing on
Test_ox, our method achieves the best performance,
and this phenomenon is repeated when training
on Train_ox and testing on Test_rw. This further
indicates that our network has better generalization
ability. For cross-dataset validation, the results of
training on Train_ox and testing on Test_ox are
relatively similar to those of training on Train rw
and testing on Test_ox (see Table 2, columns 9-14).
However, the performance when training on Train_rw
and testing on Test_rw is evidently better than when
training on Train_ox and testing on Test_rw (see
Table 2, columns 3-8, e.g., the PSNR and SSIM
of EnsNet are improved from 26.41 to 33.78 and from
87.30% to 95.43%, respectively. These results indicate
that our dataset is more suitable for this scene text
removal task, especially for real-world applications.

Figure 6 shows text-erased images using all six
methods. Three groups of three rows separately cor-
respond to using the Oxford dataset [35], the SCUT-
EnsText dataset [12], and our dataset. Compared
to other text removal methods, our method more
effectively erases text and inpaints the text area with
proper content. In the first row of Fig. 6, our result

preserves texture details more consistent with the
original non-text areas, while other methods result in
noticeable text remnants or visual inconsistency. The
last row of Fig. 6 similarly shows that our method
can preserve the wrinkles of the T-shirt. Our method
can also better process oblique text (see rows 5, 6). In
the penultimate row, our result has no text remnants
and preserves the original light transition well.

In addition, in Table 3 we compare the model
complexity in terms of the number of learnable
parameters and FLOPs required. Our method is
intermediate for both measures. The relatively small
number of FLOPs required indicates that the speed
of our method is competitive.

4.6 Multilingual and selective text removal

In this subsection, further results are provided in
Fig. 7 showing multilingual text removal (top 3
rows) and selective text removal (bottom 3 rows.
MTRNet [10], MTRNet++ [11], and our method
were trained on our real-world dataset.

Compared to MTRNet and MTRNet++, our

Table 3 Comparison of model complexity in terms of the number of
learnable parameters and FLOPs needed. The largest and smallest
values are indicated in red and blue respectively

Method Parameters (M) FLOPs (G)
ST Eraser 0.27 100.86
MTRNet 0.34 66.79

MTRNet++ 3.76 62.51

EraseNet 19.74 14.64

Ours 3.79 57.48

Table 2 Quantitative comparison of our method to the state-of-the-art methods. All methods were trained and tested on the Oxford dataset
and our dataset separately. For PSNR and SSIM, higher is better; for MAE, R (recall), P (precision), and F' (f-measure), lower is better

Testing set Test_rw Test_ox
Training  Method MAE PSNR SSIM (%) R (%) P (%) F (%) MAE PSNR SSIM (%) R (%) P (%) F (%)
set Original image — — — 4325 40.68 41.93 — — — 48.24  67.93 56.42
ST Eraser 2,52 27.20 91.13 6.23  20.55 9.56 2.67  27.94 90.24  14.42  49.27 2231
EnsNet 1.22  33.78 95.43 1.94  20.18 3.53 1.89  31.37 93.03 7.25 49.84  12.65
Train.rw  MTRNet 1.62 3431 96.34 0.55  17.14 1.06 2.31  31.81 92.36 0.49  37.27 0.96
MTRNet++ 0.97  36.02 96.28 0.99  15.87 1.86 1.71  32.56 93.60 0.76  39.53 1.49
EraseNet 1.16  34.10 95.55 1.58  19.34 2.92 177 3212 93.87 591 4432 10.43
Ours 0.75 39.44 97.56 0.35 10.23 0.68 1.63 34.40 93.97 0.05 15.38 0.10
ST Eraser 4.26  21.52 82.20 28.34 36.17  31.78 5.77  20.92 77.05  21.56  48.60  29.87
EnsNet 2.55 2641 87.30  23.77  34.56  28.17 1.75  32.76 93.20 4.07  46.09 7.48
Train.ox MTRNet 1.89  32.53 92.68 11.07  34.95 16.82 2.24  31.79 92.06 1.79  42.75 3.43
MTRNet++ 1.31  35.12 96.02  12.21  33.18 17.85 1.77  33.97 93.80 2.19  44.37 4.17
EraseNet 1.64  33.85 93.11 15.66  18.29  16.87 1.85  33.25 93.55 3.82 4551 7.05
Ours 1.23 36.23 96.64 0.33 10.89 0.64 1.72 34.48 94.47 0.00 0.00 0.00
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Bergbauernjoghurt
| &Maille

Input ST Eraser EnsNet MTRNet MTRNet++

EraseNet Ours
Fig. 6 Qualitative comparison of our method to ST Eraser, EnsNet, MTRNet, MTRNet++, and EraseNet. Top to bottom, in groups of 3
rows: using Oxford dataset, SCUT-EnsText dataset, and our dataset.
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MTRNet++ Stroke mask

Fig. 7 Multilingual text removal (top 3 rows) and selective text removal (bottom 3 rows). Left to right: original image, input mask, MTRNet
output, MTRNet++ output, our output, and stroke mask detected by our method.

method can more successfully remove text in multiple
languages because our text stroke detection network
more efficiently focuses on the text and even learns
Thus,
it provides more useful information in the form of
accurate stroke masks for the consecutive text removal
generative network than a region mask.

Our method can also accomplish selective text
removal. Given an auxiliary mask, where the text to
be removed is indicated by a user-provided polygonal
mask, our method can remove the desired text
without affecting other text.

4.7 Ablation study

the differences between various languages.

Next, the effects of different components of our
network are considered.
4.7.1 Baseline

For the baseline model, a single TRGNet Gg
(shown in Fig. 2) is used as the generator, and the
discriminator proposed in SN-PatchGAN [28] is used
as the discriminator D in Fig. 3. The inputs to
TRGNet here are a text image I and a binary mask

EN?VIEIIR\ISI('?YI-gggAS @ SPringel’

M. Comparing Tables 2 and 4 shows that this
baseline model already has similar performance to
previous text removal methods, including EnsNet
which does not use an auxiliary mask and MTRNet
which uses a region mask. The visual results are also
good, as shown in the second column of Fig. 8.

4.7.2  Weighted-patch-based discriminator

The original discriminator proposed in SN-PatchGAN
treats all patches equally. Our work focuses on
masked regions, and a weighted discriminator, which
can pay more attention to the masked area by
assigning a higher weight, is used. Comparing Base-

Table 4 Ablation study. Models are trained on Train_rw and tested
on Test_rw. tMAE is the mean absolute error between the detected
stroke mask and ground truth stroke mask

Method MAE  PSNR  SSIM (%) tMAE (%)
Baseline 1.59 35.00 95.42 —
WD 1.00 38.31 97.22 —
TSDNet 0.98 38.17 97.33 7.63
WD + TSDNet 0.92 38.47 97.48 4.85
Cascade 0.75 39.44 97.56 4.73
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Baseline WD

Cascade

TSDNet WD+TSDNet

Fig. 8 Qualitative results of ablation study. The last column gives the best result.

line and WD rows in Table 4 shows that our proposed
weighted discriminator can significantly improve
performance over that of the baseline model. The
first row in Fig. 8 further shows that our proposed
WD can help maintain structural consistency in a
given image.

4.7.8  Text stroke detection network

A TSDNet is added to the baseline model to
demonstrate the effectiveness of accurate text stroke
extraction. Table 4 shows that a baseline model with
TSDNet achieves much higher PSNR and SSIM, and

a much lower MAE (see rows Baseline and TSDNet).

Our proposed TSDNet can effectively distinguish
whether the given area is a text stroke, information

which can help TRGNet to remove masked areas
more purposefully. Combining WD and TSDNet
(row WD+4TSDNet in Table 4) shows a further
performance improvement. Results in the second
row of Fig. 8 shows how our TSDNet can help
to completely remove text from an image (see the
character T).

4.7.4  Cascaded TSDNet and TRGNet

Cascading TSDNet and TRGNet can help fix minor
mistakes and slight text remnants left in the results
of the first unit of TSDNet and TRGNet. This
includes completing partially detected text strokes,
removing residual text, and fixing visual artifacts.
We also experimented with using three cascaded

(B) TSINGHLA 4 Springer
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units, but the text-erased results were slightly blurred,
possibly because some high-frequency information is
lost during cascading.

4.7.5  Stroke detection

Text stroke detection is an important component of
our generic framework. Here, the effects of stroke
detection performance on final text removal are
further discussed. Inserting TSDNet into the baseline
clearly improves performance validating our design
for TSDNet. Furthermore, text stroke detection
performance is enhanced via the cascaded design
(tMAE for Cascade is substantially smaller than for
TSDNet in Table 4), resulting in better text removal.
This finding further illustrates that improved stroke
detection can enhance the final text removal result. In
addition, tMAE of MTRNet++ is significantly worse
than that of our method. Figure 9 shows several
examples of text stroke detection: our results are
clearer and more exact. This improvement in stroke

detection may be the main reason for the limited
performance of MTRNet++, and why our method is
more effective than MTRNet++.

BIFRERARS | BREAEE RIS

BIRE AR BRTS

9z SEE S (ST REITE | mARRTEETH
Damage or usage  Wel b ROEV Damage or usage
in case of no In case of no in case of no

SUCe A ACILEREN gmargency is Blagal | emergency is illegal

MTRNet++

Ours

Fig. 9 Comparison of text stroke detection methods.

5 Conclusions

In this work, a novel GAN-based framework is
proposed for the scene text removal task by
decoupling text stroke detection and stroke removal.

B TRANGHYA 4 Springer

A text stroke detection network and a text removal
generative network are designed and implemented,
and the final model is constructed by cascading
the combination of the two networks. Quantitative
and qualitative studies illustrate the superior results
of our proposed network. Our study implies that
knowing the positions of text strokes is beneficial
to the scene text removal problem. A versatile real-
world dataset, including text images, ground truth
text-free images, and auxiliary masks, which can be
used to benchmark the text removal methods, has
been constructed. Moreover, our approach can be
used to quickly construct a large scale text-free image
dataset from images with text, and pixel-wise text
stroke annotations can be obtained by binarizing
the difference between paired text image and text-
free image. Such datasets will provide better, more
fine-grained supervised information to improve the
performance of scene text detection and recognition
tasks. Our source code is available at https://
github.com/wcq19941215/SceneTextRemoval.

Our method can generate implausible results if
the text area is too large. We believe that a
larger dataset with more diverse data could help to
mitigate existing shortcomings. In future, we plan to
collect more real-world text images and construct
a larger, richer dataset that can be used for the
text removal task and other related research, e.g.,
realistic text synthesis. In this work, text region
masks are used in an offline manner, considering
the imperfect performance of current automatic text
detectors and the requirements of partial text removal
applications. We hope to design a more complete
framework combining automatic text detection, which
supports refinement of possible detection errors and
selection of specific text regions with simple user
guidance. Studying semi-supervised text removal
would also be engaging.
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