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Figure 1: The work flow of our method. From left to right: initial point set, the result after 50 iterations, the result after 100 iterations, and
the final result. By iteratively adjusting the position of points and the sampling radius, the gap regions (colorized polygons) become smaller
and smaller. Finally, the sampling becomes maximal.

Abstract

Maximal Poisson-disk Sampling (MPS) is a fundamental research
topic in computer graphics. An ideal MPS pattern should satis-
fy three properties: bias-free, minimal distance, maximal cover-
age. The classic approach for generating MPS is dart throwing, but
this method is unable to precisely control the number of samples
when achieving maximality [Ebeida et al. 2011]. Sample elimi-
nation [Yuksel 2015] is an recently proposed algorithm that could
generate Poisson-disk sets with an exactly desired size, but it can-
not guarantee the maximal coverage. In this work, we propose a
simple 2D MPS algorithm that can precisely control the number
of samples, while meeting all three criteria simultaneously. Unlike
previous conflict-based methods, our algorithm controls the number
of samples by dynamically adjusting sampling radius.
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1 Our Approach

Core idea. Given the desired sample number /N and the sampling
domain €, we first generate an initial point set X = {x;}~_; using
an estimated sampling radius, which is a little smaller than theo-
retical value of using /N samples. Then we construct a Delaunay
triangulation DT'(X) and iteratively optimize the point distribu-
tion. In each iteration, the shortest edge F is selected in DT'(X)
and one endpoint of £ is removed from X. We then dynamically
update DT'(X) and carry out a gap detection operation [Yan and
Wonka 2013]. Subsequently, we extract gap regions using the gap
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processing algorithm [ Yan and Wonka 2013] and insert a new point
into X by performing dart throwing in a random gap primitive. This
algorithm converges when there are no gap triangles in DT'(X) any
more after removing one endpoint. In this case, the new point will
be positioned at the current largest circumscribe center.

Endpoint removal. To determine which endpoint of the shortest
edge should be removed, we select the end point with the largest
neighborhood-averaged area. The neighborhood-average area is de-

fined as Aqvg = ﬁ S2TCi) A;, where T'(x;) is the number of

incident triangles, and A; is the area of each incident triangle.

Arbitrary boundary conditions. To handle arbitrary input bound-
aries, we first generate samples at the sharp corners and make these
points fixed during subsequent optimization process. Next, we in-
tegrate a feature-preserving operation into above framework: af-
ter each iteration, samples whose Voronoi cells intersect with the
boundary will be projected onto the boundary.

2 Results and Future work

We compare our results with the recent representative Poisson-
disk sampling algorithms in Fig. 2, including Sampling Elimination
(SE) [Yuksel 2015], Farthest Point Optimization (FPO) [Schlomer
et al. 2011] and Maximal Poisson-disk Sampling (MPS) [Ebeida
et al. 2011; Yan and Wonka 2013]. The spectral analysis are gener-
ated by PSA [Schlomer and Deussen 2011] software. We see that
our results have similar spectral properties to MPS.

We also compute the quality of sampling and the corresponding
triangulation in periodic domain as shown in Tab. 1. The reader
is referred to [Yan et al. 2015] for the meaning of these measures.
It shows that FPO has the best geometric properties, but the FPO
algorithm is deterministic and it is the slowest; while SE is fastest
among all the competitors, it has the lowest qualities. Both the
spectral and geometric properties of our results are quite similar to
MPS, while we can explicitly control the number of samples.

Fig. 3 visualizes the comparison with SE [Yuksel 2015], which
indicates that SE is not maximal. We also compare the conver-
gence speed of our method with FPO, as show in Fig. 4. A ful-
I iteration means that all the samples are moved once. We find
that the sampling radius of our method becomes stable after several
iterations(< 10), which means the maximality is achieved. Fig. 5
shows two results of sampling in polygonal domains.
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Figure 2: Comparison of the spectral properties.

Table 1: Statistics of the sampling and the triangulation quality in

periodic domain.

method Jx szn Qavg emln Emin emam 0<30° 0>90° V567%

SE  0.652 0412
FPO 0.925 0.567
MPS 0.780 0.487
OURS 0.855 0.514

0.778 20.59 42.92 126.42

0.856 35.12 50.90 107.51
0.806 30.19 4530 117.11
0.833 30.21 47.97 113.85

4.83

0.00
0.00
0.00

21.72
6.50
15.07
12.60

94.14
99.61
96.53
98.30

Figure 3: Comparison of sampling results using N = 200 points.
Left: the result of sample elimination [Yuksel 2015], where col-

orized polygons indicate gaps; right: our method without gaps.
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Figure 4: Comparison of the convergence speed of our method
and FPO using the same randomly generated initial point set (with
N=2k).
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Figure 5: Sampling results of several arbitrary boundaries: Face
and Dolphin.

In the future, we plan to extend this approach to adaptive sampling
as well as surface sampling. We would also like to implement a
GPU version of the proposed algorithm.
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