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W-Net: Structure and Texture Interaction
for Image Inpainting

Ruisong Zhang, Weize Quan, Yong Zhang, Jue Wang, and Dong-Ming Yan

Abstract—Recent literature has developed two advanced tools
for image inpainting: appearance propagation and attention
matching. However, given the ineffective feature reorganization
and vulnerable attention maps, existing works yield subopti-
mal results with distorted structures and inconsistent contents.
Furthermore, we observe that deep sampling layers (DSL) and
shallow skip connections (SSC) in U-Net separately promote
image structure inference and texture synthesis. To address the
above two issues, we devise a W-shaped network (W-Net), which
consists of two key components: a texture spatial attention (TSA)
module in SSC and a structure channel excitation (SCE) module
in DSL. W-Net is a two-stage network, with coarse and refined
structures derived at each stage. Meanwhile, the TSA module
fills incomplete textures with reliable attention scores under the
guidance of coarse structures, which effectively diminishes incon-
sistency from appearance to semantics. The SCE module rectifies
structures according to the difference between coarse structures
and refined structures enhanced by texture features. Then the
module motivates them to produce more reasonable shapes. Com-
plete textures and refined structures constitute desired inpainted
images, as the output of W-Net. Experiments on multiple datasets
demonstrate the superior performance of W-Net. The source code
is available at https://github.com/Evergrow/W-Net.

Index Terms—Image inpainting; Structure and texture; Con-
volutional neural network; Attention

I. INTRODUCTION

THE longstanding goal of image inpainting has been to
synthesize visually realistic contents in missing regions

of damaged images, with contextual coherence from low-
level textures to high-level semantics. Tackling this ill-posed
problem presents various practical values in computer vision
and graphics communities, e.g., restoring deteriorated pho-
tographs [1], removing unwanted targets [2], completing oc-
cluded regions [3], [4], and editing appointed information [5].

Prior to the deep learning era, without powerful tools to
mine the treasure from massive data, traditional works simply
fill damaged pixels based on the low-level feature of neighbor
regions, e.g., propagating the appearance from borders [6], [7],
[8] and copying the matching patches from contexts [9], [10],
[11]. These methods perform well in repetitive textures and
simple patterns but suffer from unreasonable semantics and
inconsecutive structures in real-world scenarios.

In contrast, inpainting methods based on the convolutional
neural network (CNN) [14], [15], [16] utilize deep gener-
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Fig. 1: Illustration of issues to solve. (a) The ground truth
image with blue shadow as mask. (b) The result of attention-
based method GConv [12]. (c) The result of diffusion-based
method MEDFE [13]. (d) The result of our W-Net. From
zoom-in regions, GConv and MEDFE fail to adaptively fill
symmetrical eyes in red and magenta boxes, and suffer from
distorted structures in green boxes.

ative models, such as variational autoencoder (VAE) [17]
and generative adversarial network (GAN) [18], to learn the
latent mapping from corrupted input images to paired ground-
truth images. Recent mainstream deep works inherit traditional
methods completing holes in embedded latent codes, i.e.,
diffusion-based methods and attention-based methods. The
former first extend meaningful structures, such as edges [19],
[20], contours [21], and flows [22], from contexts to holes
and synthesize fine textures sequentially. The later leverage the
attention mechanism [23], [24], [25], [26] to search matching
features in the background to enhance the feature representa-
tion of missing regions. Moreover, some methods [27], [28],
[29] model and sample from the discrete distribution over the
latent codes to derive diverse results.

With the involvement of a rich semantic corpus [30], [31],
[32] and an adversarial training process [18], [33], deep
inpainting techniques achieve impressive results. However,
some issues prevail in both diffusion-based and attention-based
deep methods. First, current diffusion-based [19], [21], [22]
approaches have an overdependence on the supervision of
prior appearance information. They rarely rearrange features in
networks, e.g., explicitly spread contents into spoiled regions.
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Second, most attention-based [23], [24], [25] approaches often
obtain unstable affinities between holes and contexts, because
features extracted from holes without support of valid pixels
are different from those of contexts in both appearance and
semantics. As illustrated in Fig. 1, given the above limitations,
existing methods fail to produce perfect structures and sym-
metrical objects consistently. Latest pioneer works [34], [13],
[35], [36] have focused on these issues. Furthermore, these
works have proposed some feasible strategies, e.g., progressive
inference [37], [34], structure and texture fusion [13], [20],
and supervised attention map [35]. However, none of these
proposals have solved the two abovementioned problems at
the same time.

To address these two issues jointly, we analyze how U-
Net [38], as the backbone of the generator, can restore
impaired images. By introducing contrastive variants, i.e.,
deleting shallow skip connections (SSC) and deleting deep
sampling layers (DSL), we observe that SSC in U-Net transmit
detailed textures from input images to inpainted images.
Meanwhile, cascading contractions in DSL are responsible for
semantic structure reasoning, which coincides with the view
in [13]. Moreover, serial contractions enlarge the receptive
field of U-Net, thus making it superior to ResNet [38] in the
inference of deep structures. From this perspective, the ideal
inpainting backbone is U-Net rather than the usual ResNet.

Based on the above insights, we present a two-stage genera-
tive network with structure-texture mutual guidance for image
inpainting (see Fig. 3). The proposed network yields a W-
shaped architecture called W-Net. In the first stage, damaged
images undergo successive hierarchical contractions to ex-
tract coarse structure features. Moreover, expansive operations
propagate valid structure information to corrupted regions.
Then, multi-scale texture spatial attention (TSA) modules
utilize coarse structure features as a proxy to calculate multi-
level score maps and gather encoded features in shallow
layers to stick textures in missing regions. Unlike existing
attention blocks [23], [24], [25] implementing the pairwise
affinity and weighted representation under the same feature
maps, our TSA module borrows structure affinities to synthe-
size textures within SSC, which enhances the robustness of
attention maps and relieves semantic inconsistency. Combined
with recovered texture information, the second stage produces
structure features in the same way as the first stage. At the
same time, multi-scale structure channel excitation (SCE)
modules in DSL refine structure features. The core idea of
SCE module is to rectify the channel activation of structure
features according to the difference between coarse and refined
structure information. Plausible structures and vivid textures
constitute high-quality inpainted images as the result. W-Net
is trained with a pixel-wise detector [33] to eliminate visual
artifacts in inpainted images. According to the result presented
in Fig. 1, the TSA module and the SCE module reliably
overcome distortion and incoherence.

Our contributions are summarized as follows:
• We propose a texture spatial attention (TSA) module,

which adaptively synthesizes textures in shallow skip con-
nections based on structure guidance. The TSA module
alleviates incoherence from appearance to semantics.

• We develop a structure channel excitation (SCE) module
that refines structures according to residual learning, thus
leading to high-fidelity structures.

• These modules are assembled into W-Net with structure
and texture interaction. Comparisons and ablation studies
demonstrate the effectiveness.

II. RELATED WORK

In this section, we mainly summarize CNN-based works
related to our method. Early deep model-based works [14],
[39], [40], [15] extract semantic features and perceive plausible
structures and predictable textures of corrupted images for
satisfactory results. Inspired by these studies, recent deep
works tend to be diversified. We roughly divide them into
two categories: diffusion-based methods and attention-based
methods.

Diffusion-based methods inheriting the propagation of
isophotes [6], [7], [8] typically complete appearance informa-
tion and then facsimile detailed textures. For instance, Edge-
Connect [19] first sketched binary edge maps and combines
impaired images with intact edges to paint color pixels in
missing regions. As the structural representation of binary
images is relatively rough, some works substitute foreground
contours [21], edge-preserved flows [22], or monochromic
images [41] for edge maps as prior information to guide
restoration, which can acquire more accurate structures. The
advantage of these two-stage methods is that they decompose
a tricky problem into two feasible subproblems: structure re-
construction and texture generation. Moreover, users can make
creative edits to structure images in the first stage to produce
more desired results. Liu et al. [13] jointly restored structures
and textures in a mutual encoder-decoder, where structure
features and texture features benefit each other. However, when
corrupted regions become larger, directly regressing prepro-
cessing structural images becomes more difficult. Progressive
methods [42], [34], [43] attempted to transmit useful contents
from boundaries to the center of hole regions through iterative
modules. To tackle large mask cases, RFR [34] recurrently
gathered and infer the encoded features in hole boundaries.
Zeng et al. [43] suggested a feedback mechanism in iterative
inpainting, which gradually improves low-confidence pixels
inside holes. Recently, Peng et al. [29] developed a two-stage
inpainting model of the diverse structural feature generation
and the synthesis of texture details.

Attention-based methods introduce the attention mecha-
nism that uses the linear representation of correlative valid fea-
tures to strengthen features in holes to maintain global consis-
tency. This process can be regarded as the realization of patch
matching [9], [10], [11] in deep feature space. Contextual
attention [23] leveraged valid patches as convolutional filters to
synthesize unknown patches. Inspired by [23], PEN-Net [44]
filled holes by attention transfer from deep to shallow in a
pyramid fashion. In addition, Yan et al. [24] devised a shift-
connection layer, where encoder features of known regions
guide to recover decoder features of missing parts. The CSA
layer [25] modeled the semantic relevance in hole features
for efficient image completion. However, poor reconstruction
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Fig. 2: Visual comparisons against different baseline models and related variants. (a) GT and Mask; (b) ResNet; (c) U-Net;
(d) U-Net w/o DSL; (e) U-Net w/o SSC; (f) U-Net w/ Det; (g) W-Net w/ Det. “Det” means the pixel-wise detector. To avoid
the impact of model size on performance, we align the number of parameters for each model, i.e., ResNet: 52.50 M, U-Net:
58.61 M, U-Net w/o DSL: 50.58 M, U-Net w/o SSC: 57.96 M, and W-Net: 46.49 M.

before attention layers inevitably leads to ineffective feature
matching in score maps. To overcome this limitation, Zhou et
al. [35] devised a dual spatial attention module using ground-
truth affinities as the oracle supervision for high-fidelity face
completion. Zeng et al. [36] modified CA modules [23] into
an auxiliary branch supervised by contextual reconstruction
loss to find proper reference regions. Meanwhile, partial
convolution [45] renormalized the weights of convolutional
filters on valid pixels, which is considered as a handcrafted
attention mechanism. Other mask-aware methods like DS-
Net [46] and MADF [47] designed dynamic convolution and
normalization to achieve better results. Motivated by [45], Yu
et al. [12] designed gated convolution to learn the dynamic
weights for each pixel from data. Furthermore, Xie et al. [48]
presented a bidirectional attention map for the soft mask
update. Meanwhile, Zhang et al. [33] inserted the weight map
from a dense detector into reconstruction loss for removing
visual artifacts. Recent research [20] has proposed a two-
stream generator jointly inferring image structures and textures
with an attention-based multi-scale feature aggregation.

III. EFFECT ANALYSES OF ARCHITECTURES

Previous inpainting networks mainly include two types:
few samplings with no skip connections represented by
ResNet [38] and rich samplings with skip connections repre-
sented by U-Net [38]. Comparing the results of two backbones
shown in Fig. 2b and 2c, U-Net yields complete and reasonable
structures, while ResNet fails to make this information clear,
especially in large missing regions. In U-Net, the original
resolution is progressively scaled down to 1×1, thus providing
a sufficient receptive field to cover the whole contextual
regions for inpainting. Some recent works [15], [23], [19],
[22] have attempted to enlarge the receptive field of ResNet
or hallucinate novel contents using dilated convolution [49] or
perceptual loss [50]. While these approaches are effective in
some cases, the mechanisms of their networks are implicit to
analyze due to the lack of hierarchical features.

To explore and analyze the workflow of U-Net, we introduce
two related variants of U-Net, i.e., reducing the number of
the sampling layer (same as [51]) and removing skip con-
nections between shallow layers. For the architecture without
deep sampling layers (DSL), restored images in Fig. 2d also
lose semantic structures, which indicates that contractions
in deep layers facilitate the structure recovery. Shallow skip
connections (SSC) in U-Net extract detailed textures and
synthesize them in generated images. Thus, deleting SSC
would cause blurry results in valid regions as shown in Fig. 2e.
Ambiguous filled regions from Fig. 2c to Fig. 2e illustrate
that the vanilla reconstruction loss (e.g., ℓ1 distance) always
degrades to smooth inpainted contents for less error risk. We
add a detector as a rival to the generator [33] to make the
missing regions appear through some fine details. However,
these results (Fig. 2f) still suffer from trivial textures and
unsuitable structures because U-Net directly transmits incom-
plete textures in SSC and misses the revision to immature
structures in DSL.

IV. PROPOSED METHOD

Inspired by the observations on U-Net and its shortages, we
first propose W-Net in Sec. IV-A. Then, we discuss how our
designed texture spatial attention (TSA) module and structure
channel excitation (SCE) module improve the inpainting ca-
pability of W-Net in Sec. IV-B and IV-C. In Sec. IV-D, we
describe the implementation of the whole inpainting frame-
work, where W-Net and a dense detector [33] work together
to reduce blurry artifacts with perceptual loss [50].

A. W-Net

As shown in Fig. 3, W-Net cascades two incomplete U-
Net, in which features are reorganized into eight layers (from
128×128 to 1×1): three shallow layers as texture features and
five deep layers as structure features. This division is based on
the insight, i.e., shallow skip connections synthesize textures
and deep sampling layers generate structures, as mentioned in
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Fig. 3: The architecture of our designed W-Net with the dense detector. Note that all cubes in the figure represent features
rather than convolutional blocks. The sampling rate is marked around the arrow. Arrows denoting up/down-sampling between
adjacent features are omitted for simplicity. The detailed schema of TSA module and SCE module are illustrated in Fig. 4.

Sec. III. In the first stage, W-Net employs sequential down-
sampling convolutions to extract semantic structure features of
the corrupted image. Embedded features are added to corre-
sponding previous features and expanded to higher resolutions
for propagating structure information from contexts to holes.
This simple encoder-decoder can effectively recover rough
structures in missing regions, as demonstrated in Fig. 2e.
Multi-scale TSA modules, guided by the topmost structure
feature, fill holes in each texture feature layer successively.
Specifically, TSA modules utilize incomplete texture features
and structure features with necessary up-sampling (blue solid
arrows in Fig. 3) as the input to obtain complete texture
features, which are conveyed to the second stage through
skip connections (three dark green arrows in Fig. 3). The
aggregation of filled texture features from all TSA modules is
encoded into deep structure features. Then, multi-scale SCE
modules enhance these structure features. Activated structure
features produced by the SCE module, which replace original
structure features (five two-way blue dotted arrows), are down-
sampled and input into the next-level SCE module. Finally,
complete textures and refined structures are concatenated to
form a high-quality image that serves as the output of W-Net.

W-Net arranges texture features and structure features into
two flows, respectively. The texture flow, with corrupted
textures as the input, synthesizes complete textures with coarse
structures as an intermediary guidance. Meanwhile, the struc-
ture flow, with coarse structures as the start, refines precise
structures with complete textures as a middle supplement.
This interaction between the media can enhance the capa-
bility of both flows. Different from the previous two-stage
networks [23], [12], [25], [19] that supervise coarse inpainting
results, W-Net without semi-finished results only regresses the
final results to ground-truth images. Compared with different
targets at each stage, end-to-end training with a uniform
objective is beneficial in reorganizing features in networks.
Unlike most diffusion-based approaches [19], [22], [13], W-

Net does not require any prior information as supervision.
The principle of W-Net is based on the intrinsic property that
textures displayed as pixels are sensitive to contractions while
structures represented as patches are the opposite.

B. Texture Spatial Attention Module

Shallow skip connections in U-Net lack the requisite filling
operation, thus resulting in blurry textures and inconsistent
contents in filled images, as shown in Fig. 2f. To solve this
issue, we design a novel TSA module to establish the long-
term dependencies of features in the spatial domain so as
to enhance corrupted features and ensure global consistency.
Original non-local blocks [52], [53] catch the self-attention of
entire images for feature self-activation, while the TSA mod-
ule obtains auxiliary information from structures to intensify
texture features in missing regions, as shown in Fig. 4a.

Formally, X is the topmost structure feature, and Y𝑛 (𝑛 ∈
{1, 2, 3}) denotes the 𝑛-th texture layer. For instance, when
restoring Y𝑛, X is up-sampled by 𝑛 times to X𝑛 with the same
resolution as Y𝑛. The corresponding X𝑛 replaces corrupted
features in the mask M𝑛, i.e., Y𝑛 = (1 − M𝑛) ⊙ Y𝑛 + M𝑛 ⊙
X𝑛, where ⊙ denotes the pixel-wise product. Subsequently, X𝑛

and Y𝑛 are reshaped into 𝑁 × 𝐶, where 𝑁,𝐶 are the number
of feature locations and channels, respectively. The affinity
𝑎𝑛
𝑖, 𝑗

∈ R𝑁×𝑁 between the 𝑖𝑡ℎ location and 𝑗 𝑡ℎ location in X𝑛

is written as

𝑎𝑛𝑖, 𝑗 =
exp(𝑠𝑖 𝑗 )∑𝑁
𝑘=1 exp(𝑠𝑖𝑘)

, where 𝑠𝑖 𝑗 = ⟨X𝑛
𝑖 ,X

𝑛
𝑗 ⟩. (1)

The computation of the score map directly uses raw features
to retain the robustness of the TSA modules. According to the
attention map computed from X𝑛, Y𝑛 is reinforced by

Ỹ𝑛
= 𝛾 · M𝑛 ⊙ F (Y𝑛 ⊗ A𝑛) + Y𝑛, (2)

where F (·) is the reshape operation from 𝑁 ×𝐶 to 𝐻 ×𝑊 ×𝐶

(𝐻,𝑊 are the height and width of original features), ⊗ is the
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Fig. 4: Overview of TSA module (a) and SCE module (b). Let ⊗ be matrix multiplication, ⊖ be pixel-wise absolute error, and
⊛ be channel-wise multiplication. The rest symbols are the same as those in Fig. 3.

matrix multiplication. 𝛾 is a learnable weight to merge features
in corrupted regions. Filled texture features Ỹ𝑛 is output to the
shallow skip connection and down-sampled for aggregation.

Essentially, the TSA module uses the correlation between
structure features to repair texture features. After a compre-
hensive inference, holes and contexts in the structure features
follow the trend of the similar modality from appearance to
semantics in Fig. 2e, which make the calculating score map
more reliable. Most attention blocks in inpainting works such
as CA [23] and CSA [25], which are parallel or within the deep
reasoning process, may be disturbed by incongruent features.
During the enhancement of invalid features, we consider global
features instead of contextual features [23], [12] only, and
the self-representation in mask regions makes the completed
contents more consistent.

C. Structure Channel Excitation Module

After making deep inferences twice, repaired results, espe-
cially in large impaired regions, sometimes appear with am-
biguous semantics and unsharp structures, which affects visual
realism. Hence, we propose an SCE module, which is based on
the disparity between coarse and refined structure features, and
adaptively recalibrates channel responses of refined structure
features to tackle the above scenarios. Concretely, we take S𝑐

as the coarse structure features, and use S𝑟 to denote refined
structure features. S𝑟 extracted from filled texture features are
more accurate than S𝑐 to represent structure information. The
SCE module reinforces correct structures that are added after
refined reasoning through residual learning so that hole struc-
tures have the same delicate degree as background structures.
Inspired by the SE block [54], we utilize three fully-connected
(FC) layers to capture channel-wise dependencies and rescale
S𝑟 , which are formulated as

S̃𝑟 = FC(G(|S𝑟 − S𝑐 |)) ⊛ S𝑟 . (3)

Here, G(·) denotes squeezing global spatial information into
a channel descriptor, and ⊛ means the channel-wise multi-
plication. As shown in Fig. 4b, the above transformation is
performed at each level of structure features successively, and
outputs corresponding activated structure features S̃𝑟 .

D. Implementation
The input of W-Net is an image with white pixels as

impaired regions and the corresponding binary mask, where
black pixels indicate valid regions and white pixels indicate
missing regions. Practically, a pair of a ground-truth image I𝑔𝑡
and a mask M blends to obtain an impaired image I𝑖𝑚, i.e.,
I𝑖𝑚 = I𝑔𝑡 ⊙ (1 − M) + M. W-Net fills holes and outputs the
prediction image I𝑝𝑟𝑒𝑑 with the same resolution as I𝑔𝑡 . The
prediction image merges with the impaired image as the final
completed result I𝑟𝑒, written as I𝑟𝑒 = (1−M)⊙I𝑖𝑚+M⊙I𝑝𝑟𝑒𝑑 .
As mentioned in Sec. III, taking the vanilla reconstruction loss
as the objective to train W-Net would generate over-smooth
results. To prevent this degradation, we leverage a pixel-wise
detector to localize visual artifacts, which frequently occur in
missing regions. Naturally, the detector is trained by the focal
loss [55] (considering the sample imbalance problem) with M
as a weak label, which can be formulated as

L 𝑓 𝑜𝑐𝑎𝑙 (V,M) = − 1
𝑁

𝑁∑︁
𝑖=1

(1 − 𝛼) (1 − V𝑖)𝛾M𝑖 log V𝑖

+ 𝛼V𝛾

𝑖
(1 − M𝑖) log(1 − V𝑖),

(4)

where 𝛼 is the weighting factor equal to the mask ratio of
damaged images, 𝛾 is tunable focusing parameter set to 2,
and V is the detector output for the valuation of inpainted
images. A exponential function transforms the valuation to
the weight, which combines with the reconstruction loss to
train W-Net. To further enhance the nontrivial details, I𝑟𝑒
and I𝑔𝑡 are measured in the feature space [50], where the
pre-trained VGG16 model [56] on ImageNet [57] extracts
abundant semantics. The loss is written as

L𝑝𝑒𝑟𝑐 =
1
𝐿

𝐿∑︁
𝑖=1

| |Φ𝑖 (I𝑟𝑒) −Φ𝑖 (I𝑔𝑡 ) | |1, (5)

where Φ𝑖 (·) is the output of the 𝑖-th layer of VGG16. To this
end, the final training objective can be written as{

min
𝐺

| |𝑥𝐷 (𝐺 (I𝑖𝑚 ,M) ) ⊙ (𝐺 (I𝑖𝑚,M) − I𝑔𝑡 ) | |1 + 𝜆L𝑝𝑒𝑟𝑐,

max
𝐷

−L 𝑓 𝑜𝑐𝑎𝑙 (𝐷 (𝐺 (I𝑖𝑚,M)),M).
(6)

Here, we define 𝐺 as the generator, and define 𝐷 as the
detector. 𝑥 is a base number of exponential function set to
10, 𝜆 is the trade-off weight set to 0.05.
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W-NetInput MEDFE CTSDGGConv GTDSI

Fig. 5: Qualitative comparisons of our W-Net with GConv [12], MEDFE [13], CTSDG [20], and DSI [29] for irregular masks.
From top to bottom: CelebA-HQ, Paris StreetView, and Places2. More comparisons are provided in supplemental material.

V. EXPERIMENT

In this section, we first evaluate our inpainting model via
quantitative and qualitative comparisons with several advanced
works. We also conduct ablation studies about the TSA module
and the SCE module to validate their effectiveness. Finally, we
present the real-world applications of our method.

A. Experimental Settings

All experiments are performed on three extensively adopted
datasets: CelebA-HQ [30], [58], Places2 [31], and Paris
StreetView [32]. We split these three datasets into training and
testing set according to the method in [33], and utilize QD-
IMD1 (human drawings) to construct a large-scale irregular

1https://github.com/karfly/qd-imd

mask set for training models. For diversified evaluation, test
mask sets include irregular masks (from Liu et al. [45]) and
a center square mask. All images and masks in training and
testing are resized to 256 × 256.

Inpainting models are optimized by the Adam opti-
mizer [59], where 𝛽1 = 0.0 and 𝛽2 = 0.9. We separately retain
the learning rate of the generator and detector at 10−4 and
10−5. On a single NVIDIA TITAN RTX GPU (24GB), we
train our model for 200 epochs with a batch size of 4.

B. Comparisons with State-of-the-arts

We qualitatively and quantitatively compare our method
with several advanced methods: GConv [12], MEDFE [13],
CTSDG [20], DSI [29], DS-Net [46], and MADF [47].
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W-NetInput DS-Net MADF*DS-Net* GTMADF

Fig. 6: Qualitative comparisons with DS-Net [46], MADF [47], and their versions without the style loss (DS-Net* and MADF*).

DSIInput GConv MEDFE W-NetCTSDG GT

Fig. 7: Qualitative comparisons with GConv [12], MEDFE [13], CTSDG [20], and DSI [29] for center square masks.

Qualitative Comparisons. Fig. 5 shows the results for filling
irregular holes. Given the rich deep samplings and designed
SCE modules, W-Net has powerful capability to reconstruct fa-
cial shapes and infer window structures. GConv, as a ResNet-
based network, is insufficient to handle them, and CTSDG
is worse due to the lack of effective structure refinement in
deep samplings. These phenomena are consistent with the
viewpoint in Sec. III. Moreover, both MEDFE and DSI fail to
synthesize reasonable textures on correct structures due to the
insufficient organization between structure and texture features
in their generators. Only W-Net effectively utilizes contextual
information to synthesize contents, e.g., facial symmetry and

similar pattern, as shown in the second and fifth rows of Fig. 5.
This adaptive filling content based on contexts is crucial for
visual realism. However, our method tends to produce smooth
results when masked regions with large ratio cover critical
regions (the neck in the second row) or missing regions lack
rich structural descriptors (the grass in the fifth row).

In Fig. 6, we also compare W-Net with DS-Net [46],
MADF [47], and their versions without the style loss, which
are aligned with the training loss of W-Net, i.e., only using
the reconstruction loss and the perceptual loss. Our method is
superior to these two methods, where the style loss seems to
play a decisive role in fine texture recovery.
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TABLE I: Quantitative comparisons. “DS-Net*” and “MADF*” represent the results of training corresponding models without
the style loss. † Lower is better. ¶ Higher is better. Bold font indicates the best score.

Dataset CelebA-HQ Paris StreetView Places2
Mask Ratio 1%-20% 20%-40% 40%-60% 1%-20% 20%-40% 40%-60% 1%-20% 20%-40% 40%-60%

PS
N

R
¶

GConv 34.08 26.30 21.66 31.84 24.68 20.77 31.16 23.92 20.02
MEDFE 33.55 26.56 22.16 31.61 25.08 21.64 30.89 24.13 20.23
CTSDG 34.78 26.94 22.31 34.07 27.54 23.39 31.47 25.85 21.84

DSI 34.66 27.14 22.40 33.58 26.37 22.15 31.83 24.39 20.29
DS-Net 35.04 27.77 23.42 34.19 27.24 23.18 31.74 25.18 21.41

DS-Net* 35.38 28.36 24.08 34.93 28.09 24.11 32.45 26.12 22.37
MADF 35.05 27.97 23.66 34.22 27.58 23.39 32.46 25.72 21.77
MADF* 35.63 29.18 24.52 34.29 27.66 23.67 33.01 26.53 22.59
W-Net 35.49 28.42 24.04 34.29 27.72 23.75 32.66 25.92 22.11

SS
IM

¶

GConv 0.981 0.922 0.803 0.960 0.855 0.693 0.957 0.842 0.662
MEDFE 0.981 0.926 0.820 0.959 0.853 0.685 0.957 0.844 0.656
CTSDG 0.983 0.929 0.811 0.973 0.910 0.775 0.961 0.880 0.728

DSI 0.984 0.934 0.827 0.971 0.889 0.737 0.961 0.853 0.674
DS-Net 0.985 0.942 0.857 0.974 0.903 0.770 0.962 0.867 0.710

DS-Net* 0.987 0.948 0.872 0.977 0.916 0.792 0.967 0.887 0.744
MADF 0.984 0.945 0.868 0.977 0.912 0.786 0.968 0.885 0.736
MADF* 0.989 0.953 0.880 0.975 0.908 0.776 0.971 0.894 0.746
W-Net 0.987 0.949 0.871 0.977 0.912 0.788 0.968 0.884 0.736

FI
D
†

GConv 1.42 4.37 9.74 14.05 40.71 67.42 8.44 22.15 38.44
MEDFE 1.58 4.59 9.66 11.39 35.37 66.09 6.18 18.64 35.57
CTSDG 1.52 5.73 10.25 9.21 33.09 63.77 3.28 13.28 33.74

DSI 1.13 3.97 8.18 9.63 32.67 62.98 3.31 12.06 29.55
DS-Net 1.06 3.44 6.82 8.80 27.76 51.16 3.22 9.86 20.04

DS-Net* 1.27 4.99 12.07 10.36 37.18 94.48 4.44 19.51 50.16
MADF 1.10 4.36 11.15 7.50 24.78 49.10 2.51 7.77 16.82
MADF* 1.22 4.53 11.57 11.86 42.56 91.99 3.97 17.27 45.63
W-Net 1.11 3.89 9.32 9.59 31.07 61.31 3.42 11.91 26.80

L
PI

PS
†

GConv 0.023 0.076 0.153 0.037 0.113 0.235 0.044 0.130 0.243
MEDFE 0.023 0.068 0.129 0.033 0.103 0.206 0.049 0.135 0.247
CTSDG 0.023 0.083 0.175 0.024 0.088 0.190 0.031 0.111 0.232

DSI 0.018 0.061 0.132 0.027 0.091 0.188 0.033 0.107 0.216
DS-Net 0.017 0.052 0.104 0.026 0.082 0.166 0.037 0.104 0.194

DS-Net* 0.026 0.069 0.144 0.031 0.106 0.220 0.045 0.139 0.271
MADF 0.017 0.063 0.139 0.022 0.074 0.161 0.027 0.084 0.178
MADF* 0.019 0.069 0.153 0.039 0.125 0.261 0.045 0.145 0.268
W-Net 0.016 0.054 0.115 0.027 0.085 0.179 0.033 0.103 0.206

To assess the generality of mask shapes, we test inpainting
models on the center square mask without extra training, and
the results are shown in Fig. 7. Compared with the other four
methods, our inpainting results have fewer visual artifacts.
Quantitative Comparisons. We utilize PSNR, SSIM [60],
FID [61], and LPIPS [62] to measure the performance quanti-
tatively. As shown in Table I, our method performs well for all
metrics on the CelebA-HQ dataset because we consider facial
symmetry and the results are closer to ground-truth images.
The interaction between structures and textures enables W-
Net to achieve superior results on the other two datasets. DSI
samples from latent codes for diverse results, which makes
higher FID/LPIPS and lower PSNR/SSIM, especially in large
mask ratios. DS-Net and MADF perform very well in FID and
LPIPS, while DS-NET* and MADF* perform the opposite,
mainly due to the style loss favoring perception measure.

C. Ablation Studies

To verify the effectiveness of the TSA module and the SCE
module, we conduct ablation studies on all three datasets with-

out perceptual loss. The experiment involves three variants,
i.e., removing the TSA module and the SCE module separately
and removing both modules simultaneously (baseline) for
comparison. Moreover, we utilize self-attention (SA) modules
and squeeze-and-excitation (SE) blocks to replace the TSA
modules and the SCE modules, respectively, to demonstrate
the improvement of our designed modules over existing mod-
ules. The attention modules from previous inpainting works
including CA [23] and SLA [27] are also used to demonstrate
the superiority of the TSA module.

Effect of TSA module. As shown in Fig. 8, models with the
TSA module (d, f, and g) repair corrupted regions with high-
fidelity symmetry and harmonious textures (please see green
boxes in the first and second rows). The results of b, e, and g
show that the SA module has a slight improvement in texture
synthesis but is far inferior to the TSA module. Numerical
metrics in Table III agree with the above observation because
the TSA module explores correlations in the topmost structure
features, where missing regions and valid regions have similar
forms of descriptor. Therefore, the TSA module can employ
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(a) GT + Mask (b) Baseline (c) W/o TSA (d) W/o SCE (e) TSA SA (f) SCE SE (g) Full W-Net

Fig. 8: Ablation studies of TSA module and SCE module. (a) Ground truth images with masks; (b) Baseline; (c) W-Net without
TSA module; (d) W-Net without SCE module; (e) Replacing TSA modules with SA modules; (f) Replacing SCE modules
with SE modules; (g) W-Net. Green and red boxes highlight effects of TSA module and SCE module, respectively.

TABLE II: Quantitative comparisons of different attention
modules. † Lower is better. ¶ Higher is better. Bold font
indicates the best score.

Dataset CelebA-HQ Paris SV Places2

PSNR¶
TSA 28.52 28.19 26.71
SLA 28.48 27.91 26.33
CA 26.75 26.56 25.61

SSIM¶
TSA 0.935 0.886 0.868
LSA 0.933 0.885 0.862
CA 0.908 0.852 0.842

FID†
TSA 4.13 32.73 11.42
SLA 4.18 33.44 12.22
CA 6.61 44.41 16.55

LPIPS†
TSA 0.072 0.107 0.123
SLA 0.073 0.109 0.125
CA 0.100 0.138 0.164

robust score maps to recover incomplete textures with seman-
tic and apparent consistencies, thus significantly promoting the
visual realism. As the innovation of the TSA module lies on
its ability to determine where to calculate affinities, rather than
how to calculate affinities. CA [23] adopts the convolution to
reproduce self-attention module, and SLA [27] progressively
computes the attention maps on the previous level of output.
Both numerical comparisons in Table II and visual effects in
Fig. 9 show that TSA is superior to CA and SLA.
Effect of SCE module. In the first and third rows of Fig. 8,
comparisons in the visual effect of red boxes among d, f,
and g present that the SCE module (superior to SE block)
activates to generate fine-grained structures. When the SCE
module lacks entire textures from the TSA module, the SCE
module also derives relatively clear structures based on the
difference between two inferences, comparing b and c. This
scenario proves that the SCE module can work independently

(a) GT + Mask (b) CA (c) SLA (d) TSA

Fig. 9: Ablation studies of different attention modules.

from the TSA module.

D. Model Computational Performance

In this subsection, we evaluate the computational perfor-
mance of W-Net and its competitors and select the compu-
tational complexity (in FLOPs), number of parameters, and
inference time as statistics. Inference time is the time of
a forward pass of networks. As shown in Table IV, W-
Net has relatively low computational complexity, a moderate
number of parameters, and moderate inference time among all
models. Moreover, the computational complexity of three TSA
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TABLE III: Quantitative analysis of ablation studies. † Lower is better. ¶ Higher is better. Bold font indicates the best score.

Dataset CelebA-HQ Paris StreetView
Mask Ratio 10%-20% 20%-30% 30%-40% 40%-50% 10%-20% 20%-30% 30%-40% 40%-50%

PS
N

R
¶

full W-Net 32.29 29.12 26.77 24.93 31.45 28.37 26.27 24.57
SCE → SE 32.11 28.97 26.65 24.81 31.35 28.34 26.21 24.50
TSA → SA 31.22 28.58 26.52 24.79 30.47 27.79 25.83 24.17

w/o SCE 31.74 28.78 26.53 24.74 31.35 28.31 26.19 24.48
w/o TSA 30.60 28.34 26.38 24.64 29.96 27.58 25.69 24.12
baseline 30.43 28.12 26.19 24.47 29.88 27.44 25.60 24.01

SS
IM

¶

full W-Net 0.977 0.957 0.930 0.897 0.963 0.928 0.885 0.832
SCE → SE 0.977 0.955 0.928 0.895 0.962 0.927 0.884 0.830
TSA → SA 0.972 0.952 0.926 0.892 0.956 0.921 0.877 0.821

w/o SCE 0.976 0.955 0.928 0.894 0.962 0.927 0.883 0.830
w/o TSA 0.970 0.952 0.925 0.891 0.951 0.917 0.875 0.820
baseline 0.969 0.950 0.924 0.889 0.951 0.916 0.872 0.816

FI
D
†

full W-Net 1.88 3.43 5.05 7.25 15.19 27.16 39.83 53.08
SCE → SE 1.88 3.45 5.13 7.39 15.47 27.72 39.94 53.29
TSA → SA 2.34 3.78 5.69 8.37 18.17 30.51 43.81 58.84

w/o SCE 1.91 3.50 5.25 7.63 15.62 28.03 40.93 54.27
w/o TSA 3.06 4.05 5.74 8.66 20.87 32.11 44.87 60.58
baseline 3.10 3.95 5.93 8.86 19.99 31.88 45.20 60.02

L
PI

PS
†

full W-Net 0.031 0.052 0.079 0.108 0.044 0.079 0.119 0.163
SCE → SE 0.032 0.054 0.080 0.109 0.045 0.080 0.120 0.164
TSA → SA 0.041 0.061 0.087 0.117 0.055 0.090 0.131 0.178

w/o SCE 0.033 0.054 0.081 0.108 0.046 0.081 0.120 0.164
w/o TSA 0.042 0.065 0.089 0.119 0.061 0.093 0.131 0.179
baseline 0.045 0.067 0.093 0.123 0.062 0.094 0.133 0.181

TABLE IV: Model computational performance statistics.

Model FLOPs Params Infer. time

GConv [12] 55.57 G 4.05 M 13.98 ms
MEDFE [13] 137.93 G 130.32 M 113.91 ms
CTSDG [20] 17.65 G 52.15 M 19.75 ms

DSI [29] 220.46 G 70.32 M 40.20 s
DS-Net [46] 9.47 G 33.09 M 62.34 ms
MADF [47] 51.77 G 85.14 M 15.59 ms

W-Net 25.19 G 46.49 M 29.58 ms

modules in W-Net is 1.84 G FLOPs, which is only 8.96%
of W-Net. However, TSA modules (especially the top one)
are heavy on memory, which visibly increases time costs.
Memory limitations prevent W-Net from directly repairing
high-resolution images. Meanwhile, we can use methods sim-
ilar to CRA [63], where inpainted images in low-resolution
combined with aggregated residuals produce high-resolution
results. Most of the parameter cost of W-Net is in deep sam-
pling layers (DSL), where the convolution with 512 channels
takes up about 4M parameters. Reusing the deep sampling
layers of coarse and refined structure inference greatly reduces
the number of model parameters and does not decrease either
quantitative or qualitative performance.

E. User Study

We conducted a user study to compare the visual quality of
our method with six state-of-the-art image inpainting methods.
For each of three public datasets, we randomly selected 16
inpainted images with different mask ratios (amounting to a
total of 48 images). Then, we invited 15 volunteers to select
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Fig. 10: The statistical results of user study. The height of
the bar refers to the percentage of being selected as the more
natural one, recorded at the top of the corresponding bar.

the more natural one from two inpainted images generated
by different methods without showing the mask and ground
truth. Finally, we collected 675 votes. Fig. 10 shows the
corresponding statistical results, which reveals that our W-Net
has the highest probability of being selected.
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Fig. 11: Examples of daily applications using our W-Net.
From top left to bottom right: face attribute editing, watermark
removing, occlusion completing, and object removal.

×

OursInput GT

Fig. 12: Limitation. Our method cannot copy texture patterns
from regions lacking structural representation.

F. Applications

Fig. 11 demonstrates the potential applications of W-Net in
real-world scenarios. The examples from top left to bottom
right are face attribute editing, watermark removal, occlusion
completion, and object removal. Users interactively draw
masks over editing regions or undesired objects to manipu-
late images. All results are produced by models trained on
benchmarks without specific tuning. W-Net generates plausible
textures and reasonable structures for required regions.

VI. CONCLUSION AND EXTENSION

We propose W-Net with attention modules and excitation
modules for image inpainting. From the perspective of U-
Net workflow, W-Net infers coarse and refined structures in
two stages. Furthermore, the TSA module synthesizes the
entire texture based on coarse structures, and the SCE module
recalibrates structures according to their difference. Extensive
comparisons and ablation studies demonstrate the superiority
of W-Net in inpainting performance. However, W-Net may
fail to sustain semantic coherence on regions without rich
structural information, as shown in Fig. 12. The TSA module
copies textures under the guidance of structural affinities, and
red boxes with fewer structural descriptors cannot match as the
blue boxes. Hence, a powerful structural representation with a
supervision signal may be able to address this limitation.
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